Abstract

By means of a delayed pulsed method, we carry out an experimental study of the mutual spectral coherence of supercontinuum trains generated through a tapered fiber. We observe a strong dependence of the spectral coherence on the input wavelength. Analysis of the interferograms shows that this is related to the robustness of different order soliton fission processes. A broadband continuum with 20dB wavelength from 500nm~1300nm with high coherence (mean visibility g12~0.7) is obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25–27 (2000)
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000)
    [CrossRef]
  3. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
    [CrossRef]
  4. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002)
    [CrossRef]
  5. T.M. Fortier, J. Ye, S.T. Cundiff, and R.S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effects on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002)
    [CrossRef]
  6. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
    [CrossRef] [PubMed]
  7. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [CrossRef]
  8. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  9. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [CrossRef]
  10. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697
    [CrossRef] [PubMed]
  11. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001)
    [CrossRef]
  12. A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
    [CrossRef]
  13. G.P. Agrawal, Nonlinear fiber Optics, 3rd edition, 2001, Academic Press
  14. A.V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
    [CrossRef] [PubMed]
  15. D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
    [CrossRef] [PubMed]
  16. H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
    [CrossRef]

2003 (4)

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697
[CrossRef] [PubMed]

2002 (3)

2001 (2)

A.V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001)
[CrossRef]

2000 (4)

1999 (1)

H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
[CrossRef]

1998 (1)

A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
[CrossRef]

Agrawal, G.P.

G.P. Agrawal, Nonlinear fiber Optics, 3rd edition, 2001, Academic Press

Bellini, M.

Birks, T. A.

Coen, S.

Corwin, K. L.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

Corwin, K.L.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

Cundiff, S.T.

Cundiff, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Diddams, S.A.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

Dimmick, T. E.

Dudley, J. M.

Dudley, J.M.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

Fortier, T.M.

Gaeta, A. L.

Grellier, A.J.C.

A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
[CrossRef]

Gu, X.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

Herrmann, J.

A.V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Husakou, A.V.

A.V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kakarantzas, G.

Kimmel, M.

Knight, J. C.

D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
[CrossRef] [PubMed]

Kubota, H.

H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
[CrossRef]

Le Roux, R.

Luan, F.

D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
[CrossRef] [PubMed]

Nakazawa, M.

H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
[CrossRef]

Newbury, N. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

Newbury, N.R.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

Pannell, C.N.

A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Ranka, J.K.

Russell, P. St. J.

Shreenath, A. P.

Skryabin, D.V.

D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
[CrossRef] [PubMed]

Stentz, A.J.

Tamura, K. R.

H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
[CrossRef]

Trebino, R.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

Washburn, B. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

Webber, K.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

Windeler, R. S.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Windeler, R.S.

Ye, J.

T.M. Fortier, J. Ye, S.T. Cundiff, and R.S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effects on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002)
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zayer, N.K.

A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
[CrossRef]

J. Opt. Soc. Am B (1)

H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse, trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am B 16, 2223 (1999)
[CrossRef]

Opt. Commun. (1)

A.J.C. Grellier, N.K. Zayer, and C.N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998)
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Opt.Lett. (1)

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt.Lett. 28, 944–946 (2003)
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Webber, and R.S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904-1(2003)
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

A.V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Science (1)

D.V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science,  301, 1705–1708 (2003)
[CrossRef] [PubMed]

Other (1)

G.P. Agrawal, Nonlinear fiber Optics, 3rd edition, 2001, Academic Press

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.(a)
Fig. 1.(a)

Setup for measuring mutual spectral coherence of adjacent continuum pulses. BS: broadband beam splitter, ISO: isolator, M (1–4): ER.2 mirrors

Fig. 1.(b)
Fig. 1.(b)

SC interference fringes between 840nm and 875nm generated by 820nm input pulses at 112mw

Fig. 2.
Fig. 2.

SC spectrum for different input wavelengths at a constant 112mw input power.

Fig. 3.
Fig. 3.

Coherence comparison for different spectrum windows of the SC generated separately by input wavelengths of 860nm (left column: (a)~(d) figures) and 920nm (right column: (e)~(f) figures)

Fig. 4.
Fig. 4.

Fringe visibility vs. input wavelengths. Green, red, black and blue curves represent the coherence of SC generated by input wavelength of 780nm, 820nm, 860nm and 920nm respectively. Light blue line represents the group velocity dispersion (GVD) curve of the taper fiber and GVD goes to zero around 820 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g 12 ( λ , t 1 t 2 ) = E 1 * ( λ , t 1 ) E 2 ( λ , t 2 ) [ E 1 ( λ , t 1 ) 2 E 2 ( λ , t 2 ) 2 ] 1 2 ,
Ω c 2 = 4 γ P 0 β 2
N 2 = γ P 0 T 0 2 β 2 ,

Metrics