Abstract

We report the fabrication and characterization of optically pumped multiple grating distributed feedback lasers in dye doped organic thin films. Each multiplexed laser structure is inscribed at a different angle in the sample plane and possesses a unique emission wavelength. The polarization sensitivity of these structures with respect to the pumping light is exploited to enable simple and high-speed switching of the device emission wavelength.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Donval, E. Toussaere, S. Brasselet, and J. Zyss, "Comparative assessment of electrical, photoassisted and all optical in-plane poling of polymer based electrooptic modulators," Opt. Mat. 12, 215-219 (1999).
    [CrossRef]
  2. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
    [CrossRef]
  3. M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
    [CrossRef]
  4. P. I. Hsu, R. Bhattacharya, H. Gleskova, M. Huang, Z. Xi, Z. Suo, S. Wagner, and J. C. Sturm, "Thin-film transistor circuits on large-area spherical surfaces," Appl. Phys. Lett. 81, 1723-1725 (2002).
    [CrossRef]
  5. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously Color- Tunable Rubber Laser," Adv. Mat. (accepted 2003).
  6. V. G. Kozlov, V. Bulovic, and S. R. Forrest, "Temperature independent performance of organic semiconductor lasers," Appl. Phys. Lett. 71, 2575-2577 (1997).
    [CrossRef]
  7. G. Ramos-Ortiz, C. Spiegelberg, N. Peyghambarian, and B. Kippelen, "Temperature dependence of the threshold for laser emission in polymer microlasers," Appl. Phys. Lett. 77, 2783-2785 (2000).
    [CrossRef]
  8. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, "Multiwavelength distributed-feedback dye laser array and its application to spectroscopy," Opt. Lett. 27, 1220-1222 (2002).
    [CrossRef]
  9. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
    [CrossRef]
  10. M. Maeda, Y. Oki, and K. Imamura, "Ultrashort pulse generation from an integrated single-chip dye laser," IEEE J. Quantum Electron. 33, 2146-2149 (1997).
    [CrossRef]
  11. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
    [CrossRef]
  12. J. Carroll, J. Whiteaway, and D. Plumb, Distributed feedback semiconductor lasers (IEE, Stevenage, 1998).
    [CrossRef]
  13. Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, "Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide," Jpn. J. Appl. Phys. 41, 6370-6374 (2002).
    [CrossRef]
  14. D. Wright, E. Brasselet, J. Zyss, G. Langer, and W. Kern, "Dye doped organic distributed feedback lasers with index and surface gratings: The role of pump polarization and molecular orientation," J. Opt. Soc. Am. B (accepted 2004)
    [CrossRef]
  15. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
    [CrossRef]
  16. T. Matsui, M. Ozaki, and K. Yoshino, "Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation," Appl. Phys. Lett. 83, 422-424 (2003).
    [CrossRef]
  17. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, "Electro-tunable liquid-crystal laser," Adv. Mater. 15, 974-977 (2003).
    [CrossRef]
  18. T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, "Index and relief gratings in polymer films for organic distributed feedback lasers," Chem. Mat. 14, 4178-4185 (2002).
    [CrossRef]
  19. E. Brasselet, D. Wright, J. Zyss, G. Langer, and W. Kern, "Spectral encoding of the polarization state of light in spatially multiplexed dye-doped organic distributed feedback lasers," Opt. Lett. (submitted 2003).
    [PubMed]

Adv. Mat.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously Color- Tunable Rubber Laser," Adv. Mat. (accepted 2003).

Adv. Mater.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, "Electro-tunable liquid-crystal laser," Adv. Mater. 15, 974-977 (2003).
[CrossRef]

Appl. Phys. Lett.

T. Matsui, M. Ozaki, and K. Yoshino, "Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation," Appl. Phys. Lett. 83, 422-424 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, "Temperature independent performance of organic semiconductor lasers," Appl. Phys. Lett. 71, 2575-2577 (1997).
[CrossRef]

G. Ramos-Ortiz, C. Spiegelberg, N. Peyghambarian, and B. Kippelen, "Temperature dependence of the threshold for laser emission in polymer microlasers," Appl. Phys. Lett. 77, 2783-2785 (2000).
[CrossRef]

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

P. I. Hsu, R. Bhattacharya, H. Gleskova, M. Huang, Z. Xi, Z. Suo, S. Wagner, and J. C. Sturm, "Thin-film transistor circuits on large-area spherical surfaces," Appl. Phys. Lett. 81, 1723-1725 (2002).
[CrossRef]

Chem. Mat.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, "Index and relief gratings in polymer films for organic distributed feedback lasers," Chem. Mat. 14, 4178-4185 (2002).
[CrossRef]

IEEE J. Quantum Electron.

M. Maeda, Y. Oki, and K. Imamura, "Ultrashort pulse generation from an integrated single-chip dye laser," IEEE J. Quantum Electron. 33, 2146-2149 (1997).
[CrossRef]

J. Opt. Soc. Am. B.

D. Wright, E. Brasselet, J. Zyss, G. Langer, and W. Kern, "Dye doped organic distributed feedback lasers with index and surface gratings: The role of pump polarization and molecular orientation," J. Opt. Soc. Am. B (accepted 2004)
[CrossRef]

Jpn. J. Appl. Phys.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, "Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide," Jpn. J. Appl. Phys. 41, 6370-6374 (2002).
[CrossRef]

Opt. Lett.

Opt. Mat.

A. Donval, E. Toussaere, S. Brasselet, and J. Zyss, "Comparative assessment of electrical, photoassisted and all optical in-plane poling of polymer based electrooptic modulators," Opt. Mat. 12, 215-219 (1999).
[CrossRef]

Other

J. Carroll, J. Whiteaway, and D. Plumb, Distributed feedback semiconductor lasers (IEE, Stevenage, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

AFM surface profile of DFB laser sample with three multiplexed gratings. The grating modulation depth is ~40 nm.

Fig. 2.
Fig. 2.

(a) Experimental apparatus. M: mirror, L: lens, PBF: pass band filter, P: polarizer, BS: beam splitter, λ/2: half wave plate, DFB: distributed feedback laser sample, HPF: high pass filter, OF: optical fiber, PM : Power Meter (b) Orientation of the pump polarization direction impinging on the sample where α is the angle between the pump electric field E p and the x-axis.

Fig. 3.
Fig. 3.

(a) The laser emission intensity plotted against the pump intensity, where the lines are power law fits for each of the region referred as (a), (b) and (c) (see text for details). (b) Emitted laser power plotted against the absorbed pump power, the solid line being a linear fit with slope 0.027.

Fig. 4.
Fig. 4.

Normalized emission spectra of a DFB laser structure having three multiplexed gratings, obtained by varying the pump polarization direction a. Open squares: peak at 630.6 nm (α=120°), stars: 635.0 nm (α=60°), filled triangles: 638.7 nm (α=0°), the corresponding wave vectors K 30°, K 150° and K 90° make angles of 30°, 150°, and 90° respectively with the x-axis.

Fig. 5.
Fig. 5.

The pump polarization dependence of the emitted laser intensity corresponding to the three multiplexed gratings. Open squares: peak at 630.6 nm, stars: 635.0 nm, filled triangles: 638.7 nm. Theoretical fits are described in text.

Metrics