Abstract

We present wideband of 1180-2100 nm, flatly broadened supercontinuum (SC) generation using highly nonlinear hybrid fibers and femtosecond fiber laser. Stable and smooth spectra without fine structure are demonstrated. The hybrid fibers are constructed by fusion splicing fibers with different properties. The SC spectra can be properly controlled by the optimal design of the hybrid fiber based on the numerical analysis. The generated SC pulse shows the low relative intensity noise (RIN).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, �??More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,�?? Electron. Lett. 36, 2089-2090 (2000)
    [CrossRef]
  2. M. Nisoli, S. De. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, �??Compression of high-energy laser pulses below 5 fs,�?? Opt. Lett. 22, 522-524 (1997)
    [CrossRef] [PubMed]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001)
    [CrossRef]
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002)
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000)
    [CrossRef]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001)
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontiuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
    [CrossRef]
  8. N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Apply. Phys. 40, L365-L367 (Express Letter) (2001)
    [CrossRef]
  9. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002)
    [CrossRef]
  10. X. Gu, L, Xu, M. Kimmel, E. Zeek, P. O�??Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequency-resolved optical gataing and single-shot spectral measuemets reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002)
    [CrossRef]
  11. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003)
    [CrossRef] [PubMed]
  12. N. R. Newbury, B. R. Washburn, and K. L. Corwin, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003)
    [CrossRef] [PubMed]
  13. T. Hori, N. Nishizawa, T. goto, and M. Yoshida, �??Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with femtosecond pulse,�?? (submitting to J. Opt. Soc. Am. B)
  14. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001)
    [CrossRef] [PubMed]
  15. F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659- 661 (1986)
    [CrossRef] [PubMed]
  16. N. Nishizawa and T. Goto, �??Pulse trapping by ultrashort soliton pulses in optical fibers across zerodispersion wavelength,�?? Opt. Lett., 27, 152-154 (2002)
    [CrossRef]
  17. N. Nishizawa and T. Goto, �??Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,�?? Opt. Express 10, 1151-1159 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1151">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1151</a>
    [CrossRef] [PubMed]
  18. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O�??Shea, R. Trebino, S. Coen, and R. S. Windeler, �??Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,�?? Opt. Express 10, 1215-1221 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215</a>
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., (Academic Press, San Diego, 2001)
  20. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  21. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. QE-23, 1938- 1946 (1987)
    [CrossRef]
  22. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
    [CrossRef]
  23. G. P. Agrawal, Applications of Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, �??More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,�?? Electron. Lett. 36, 2089-2090 (2000)
[CrossRef]

IEEE J. Quantum Electron (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. QE-23, 1938- 1946 (1987)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

T. Hori, N. Nishizawa, T. goto, and M. Yoshida, �??Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with femtosecond pulse,�?? (submitting to J. Opt. Soc. Am. B)

Jpn. J. Apply. Phys. (1)

N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Apply. Phys. 40, L365-L367 (Express Letter) (2001)
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002)
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (10)

N. R. Newbury, B. R. Washburn, and K. L. Corwin, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003)
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000)
[CrossRef]

F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659- 661 (1986)
[CrossRef] [PubMed]

M. Nisoli, S. De. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, �??Compression of high-energy laser pulses below 5 fs,�?? Opt. Lett. 22, 522-524 (1997)
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontiuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001)
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001)
[CrossRef]

N. Nishizawa and T. Goto, �??Pulse trapping by ultrashort soliton pulses in optical fibers across zerodispersion wavelength,�?? Opt. Lett., 27, 152-154 (2002)
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002)
[CrossRef]

X. Gu, L, Xu, M. Kimmel, E. Zeek, P. O�??Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequency-resolved optical gataing and single-shot spectral measuemets reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002)
[CrossRef]

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003)
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., (Academic Press, San Diego, 2001)

G. P. Agrawal, Applications of Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Numerically calculated spectrogram, spectrum, and temporal waveform for the SC pulse generated in the 10-m-long HNL-DSF when the 100 fs pulse with 2.5 kW peak power is launched into the zero-dispersion wavelength of the fiber.

Fig. 2.
Fig. 2.

Experimental setup for the flatly broadened SC generation when the femtosecond fiber laser and the three-stages hybrid fiber are used. PMF: polarization maintaining fiber; HNL-DSF: highly nonlinear dispersion shifted fiber; N-HNLF: normal dispersion HNLF.

Fig. 3.
Fig. 3.

Dispersion curves of the fibers used in the hybrid fiber for the SC generation. The spectral location of the fiber laser and Raman soliton pulses used in the SC generations is also shown.

Fig. 4.
Fig. 4.

Optical spectra in experiment and numerical analysis at the output of the (a) fiber laser, (b) PMF, (c) HNL-DSF, and (d) N-HNLF in the three-stages hybrid fiber.

Fig. 5.
Fig. 5.

Numerically calculated spectrogram at the output of the (a) PMF, (b) HNL-DSF, and (c) N-HNLF in the hybrid fiber.

Fig. 6.
Fig. 6.

Measured RIN for the SC pulses generated in the single HNL-DSF and the three-stages hybrid fiber and the pump laser pulse.

Fig. 7.
Fig. 7.

Experimental setup for the smoothly broadened SC generation using the high-power soliton pulse and the two-stages hybrid fiber. The temporal waveform and spectrum of the highpower soliton pulse are also shown. EDF: erbium-doped fiber; WDM: wavelength division multiplexing.

Fig. 8.
Fig. 8.

Numerically calculated spectrogram at the output of the (a) high-power soliton pulse generator, (b) HNL-DSF, and (c) N-HNLF when the soliton pulse with 5.8 kW peak power at 1680 nm is launched into the two-stages hybrid fiber.

Fig. 9.
Fig. 9.

Experimental and numerically calculated spectra of the SC pulse generated in the two-stages hybrid fiber.

Fig. 10.
Fig. 10.

Measured RIN for the SC pulse generated in the two-stages hybrid fiber.

Metrics