Abstract

We present a dual-diode, InGaAsP/InP quantum-well modulator that incorporates a monolithically-integrated, InGaAs photodiode as a part of its on-chip, InP optoelectronic circuit. We theoretically show that such a dual-diode modulator allows for wavelength conversion with 10-dB RF-extinction ratio using 7 mW absorbed optical power at 10 Gb/s. We experimentally demonstrate unlimited wavelength conversion across 45 nm between 1525 nm and 1570 nm, and dual-wavelength broadcasting over 20 nm between 1530 nm and 1565 nm, spanning the entire C-band with >10dB RF-extinction ratio and using 3.1–6.7 mW absorbed optical power at 1.25 Gb/s.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. A. Coldren, �??Widely-tunable chip-scale transmitters and wavelength converters,�?? Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003), pp. 6-8.
  2. V. Sabnis, H.V. Demir, M. B. Yairi, J.S. Harris, Jr., D. A. B. Miller, �??Observation of wavelength-converting optical switching at 2.5 GHz in a surface-normal illuminated wavguide,�?? Proc. of Conference on Lasers and Electro-optics (LEOS), pp. 362-363, San Diego, CA, 2001.
  3. S. Hojfeldt, S. Bischoff, and J. Mork, �??All-optical wavelength conversion and signal regeneration using an electroabsorption modulator,�?? J. Lightwave Technol. 18, 1121-1127 (2000).
    [CrossRef]
  4. T. Otani, T. Miyazaki, S. Yamamoto, �??Optical 3R regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications,�?? IEEE Photon. Tech. Lett. 12, 431-433, (2000).
    [CrossRef]
  5. M. Hayashi, H. Tanaka, K. Ohara, T. Otani, M. Suzuki, �??OTDM transmitter using WDM-TDM conversion with an electroabsorption wavelength converter,�?? J. Lightwave Technol. 20, 236-242, (2002).
    [CrossRef]
  6. H.V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng . �??Novel optically-controlled optical switch based on intimate integration of surface-normal photodiode and waveguide electroabsorption modulator for wavelength conversion,�?? Proc. Conference on Lasers and Electro-optics (LEOS), pp.644-645, Tuscon, AZ, 2003.
  7. V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng ,"Optically-controlled electroabsorption modulators for unconstrained wavelength conversion," Appl. Phys. Lett., 2004 (to be published).
    [CrossRef]
  8. H.V. Demir, V. A. Sabnis, J.-F. Zheng, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, �??Novel scalable wavelength-converting crossbar,�?? Optical Fiber Communication Conference (OFC), (Optical Society of America, Washington, D.C., 2004) paper FD5, (to be published).
  9. S. Kodama, T. Ito, N. Watanabe, S. Kondo, H. Takeuchi, H. Ito, T. Ishibashi, �??200 Gbit/s monolithic photodiode-electroabsorption modulator optical gate,�?? Device Research Conference (DRC), pp. 151-152, Notre Dame, IN, 2001.
  10. M. B. Yairi , H.V. Demir, and D. A. B. Miller , �??Optically controlled optical gate with an optoelectronic dual diode structure: theory and experiment,�?? Opt. Quantum Electron. 33, 1035-1054, (2001).
    [CrossRef]
  11. V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng. "Optically-switched dual-diode electroabsorption modulators, " Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003), pp.12-14.
  12. J.-F. Zheng, J. P. Hanberg, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, "Novel passivation and planarization in the integration of III-V semiconductor devices, " Proc. of SPIE Photonics West Conference, paper 5356-9, San Jose, CA (January 24-29, 2004) (to be published).

Appl. Phys. Lett. (1)

V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng ,"Optically-controlled electroabsorption modulators for unconstrained wavelength conversion," Appl. Phys. Lett., 2004 (to be published).
[CrossRef]

CLEO 2001 (1)

V. Sabnis, H.V. Demir, M. B. Yairi, J.S. Harris, Jr., D. A. B. Miller, �??Observation of wavelength-converting optical switching at 2.5 GHz in a surface-normal illuminated wavguide,�?? Proc. of Conference on Lasers and Electro-optics (LEOS), pp. 362-363, San Diego, CA, 2001.

DRC 2001 (1)

S. Kodama, T. Ito, N. Watanabe, S. Kondo, H. Takeuchi, H. Ito, T. Ishibashi, �??200 Gbit/s monolithic photodiode-electroabsorption modulator optical gate,�?? Device Research Conference (DRC), pp. 151-152, Notre Dame, IN, 2001.

IEEE Photon. Tech. Lett. (1)

T. Otani, T. Miyazaki, S. Yamamoto, �??Optical 3R regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications,�?? IEEE Photon. Tech. Lett. 12, 431-433, (2000).
[CrossRef]

Integrated Photonics Research (1)

L. A. Coldren, �??Widely-tunable chip-scale transmitters and wavelength converters,�?? Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003), pp. 6-8.

Integrated Photonics Research 2003 (1)

V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng. "Optically-switched dual-diode electroabsorption modulators, " Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003), pp.12-14.

J. Lightwave Technol. (2)

LEOS 2003 (1)

H.V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, Y.-M. Houng . �??Novel optically-controlled optical switch based on intimate integration of surface-normal photodiode and waveguide electroabsorption modulator for wavelength conversion,�?? Proc. Conference on Lasers and Electro-optics (LEOS), pp.644-645, Tuscon, AZ, 2003.

OFC 2004 (1)

H.V. Demir, V. A. Sabnis, J.-F. Zheng, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, �??Novel scalable wavelength-converting crossbar,�?? Optical Fiber Communication Conference (OFC), (Optical Society of America, Washington, D.C., 2004) paper FD5, (to be published).

Opt. Quantum Electron. (1)

M. B. Yairi , H.V. Demir, and D. A. B. Miller , �??Optically controlled optical gate with an optoelectronic dual diode structure: theory and experiment,�?? Opt. Quantum Electron. 33, 1035-1054, (2001).
[CrossRef]

Proc. of SPIE (1)

J.-F. Zheng, J. P. Hanberg, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, "Novel passivation and planarization in the integration of III-V semiconductor devices, " Proc. of SPIE Photonics West Conference, paper 5356-9, San Jose, CA (January 24-29, 2004) (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A three-dimensional schematic of a dual-diode electroabsorption modulator (EAM), incorporating an on-chip photodiode (PD). The integrated optoelectronic circuit also includes a local thin film resistor.

Fig. 2.
Fig. 2.

(a) A simplified circuit of the integrated photodiode-modulator (PD-EAM), and (b) a simulated modulator transmission with >10dB extinction ratio at 10 Gb/s.

Fig. 3.
Fig. 3.

A plan-view CCD microscope picture of a fabricated photodiode-modulator switch.

Fig. 4.
Fig. 4.

SEM cross-sectional pictures across the photodiode-modulator integrated with the use of a polymer: (a) together, (b) in the vicinity of the photodiode, and (c) in the vicinity of the modulator.

Fig. 5.
Fig. 5.

(a) Optical switching in (a) NRZ and (b) RZ formats with >10dB RF-extinction ratios at 1.25 Gb/s; (b) 45-nm wavelength-conversion range between (b1) 1525.0 nm and (b2) 1570.0 nm at 1.25 Gb/s. (horizontal: 200 ps/div, vertical: 500 µW/div)

Fig. 6.
Fig. 6.

Experimental setup (MG: Melles Griot 6-axis stage, DCA: digital component analyzer, TX: transmitter, LD: cw-beam laser diode, EDFA: Erbium-doped fiber amplifier, BPF: band-pass filter, PC: polarization controller, ISO: isolator, P: probe)

Fig. 7.
Fig. 7.

8×8 C-band wavelength conversion matrix for every possible combination of 8 input and 8 output wavelengths at 1530.0 nm, 1535.0 nm, 1540.0 nm, 1545.0 nm, 1550.0 nm, 1555.0 nm, 1560.0 nm, and 1565.0 nm. (horizontal: 200 ps/div, vertical: 448 µW/div)

Fig. 8.
Fig. 8.

C-band dual-wavelength broadcasting with channel spacings of 5 nm in (a1)-(a7), 10 nm in (b1)-(b3), and 20 nm in (c). (horizontal: 200 ps/div, vertical: 333µW/div)

Tables (1)

Tables Icon

Table 1. Epitaxial layers of the modulator (left) and the photodiode (right). After growing the modulator and subsequently etching its selected areas down to the 3rd layer, the photodiode is grown only on the selected areas starting from its 4th layer [11]. (u.i.d.: un-intentionally-doped)

Metrics