Abstract

Photonic crystal fibres exhibiting endlessly single-mode operation and dispersion zero in the range 1040 to 1100 nm are demonstrated. A sub-ns pump source at 1064 nm generates a parametric output at 732 nm with an efficiency of 35%, or parametric gain of 55 dB at 1315 nm. A broad, flat supercontinuum extending from 500 nm to beyond 1750 nm is also demonstrated using the same pump source.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Mogilevtsev, T.A. Birks and P. St.J. Russell, �??Group-velocity dispersion in photonic crystal fibres,�?? Opt. Lett. 23, 1662-1664 (1998)
    [CrossRef]
  2. J.C. Knight, T.A. Birks, P. St.J. Russell, and D.M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996); Errata, Opt. Lett. 22, 484-485 (1997).
    [CrossRef] [PubMed]
  3. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, �??The analogy between photonic crystal fibres and step index fibres,�?? Optical Fibre Conference, Paper FG4-1, pages 114-116, Friday, February 26 1999.
  5. W.H. Reeves, J.C. Knight, P.St.J. Russell, and P.J. Roberts, �??Demonstration of ultra-flattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609"</a>
    [CrossRef] [PubMed]
  6. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P. St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  7. J.K. Ranka, R.S. Windeler and A.J. Stentz: �??Visible continuum generation in air�??silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000)
    [CrossRef]
  8. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P. St.J. Russell, F. Ominetto, A. Efimov, and A.J. Taylor, �??Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,�?? Nature 424, 511-515, 31st July (2003).
    [CrossRef] [PubMed]
  9. W.J. Wadsworth, J.C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. St.J. Russell, �??Soliton effects in photonic crystal fibres at 850 nm,�?? Electron. Lett. 36, 53-55 (2000).
    [CrossRef]
  10. A. Ortigosa-Blanch, J.C. Knight and P.St.J. Russell: �??Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 2567-2572 (2002).
    [CrossRef]
  11. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T-P.M. Man and P. St.J. Russell,�??Supercontinuum generation in photonic crystal fibres and optical fibre tapers: A novel light source,�?? J.Opt. Soc. Am. B 19, 2148-2155 (2002)
    [CrossRef]
  12. J.M. Dudley, S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  13. S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P. St.J. Russell: �??White-light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  14. S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P. St.J. Russell: �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764, (2002).
    [CrossRef]
  15. M. Seefeldt, A. Heuer and R. Menzel, �??Compact white-light source with an average power of 2.4 W and 900 nm spectral bandwidth,�?? Opt. Commun. 216, 199-202 (2003).
    [CrossRef]
  16. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air�??silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  17. G.P. Agrawal, Nonlinear fiber optics, (Academic Press, 2nd edition, 1995).
  18. A. Ferrando, E. Silvestre, J.J. Miret, P. Andres and M.V. Andres, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999).
    [CrossRef]
  19. J.D. Harvey, R. Leonhardt, S. Coen, G.K.L. Wong, J.C. Knight, W.J. Wadsworth and P. St.J. Russell, �??Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,�?? Opt. Lett. 28, 2225-2227 (2003)
    [CrossRef] [PubMed]
  20. M. Tateda, N. Shibata, and S. Seikai, �??Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,�?? IEEE J. Quantum Electron. QE-17, 404�??407 (1981).
    [CrossRef]

Electron. Lett.

W.J. Wadsworth, J.C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. St.J. Russell, �??Soliton effects in photonic crystal fibres at 850 nm,�?? Electron. Lett. 36, 53-55 (2000).
[CrossRef]

IEEE J. Quantum Electron.

M. Tateda, N. Shibata, and S. Seikai, �??Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,�?? IEEE J. Quantum Electron. QE-17, 404�??407 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P. St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J.Opt. Soc. Am. B

W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T-P.M. Man and P. St.J. Russell,�??Supercontinuum generation in photonic crystal fibres and optical fibre tapers: A novel light source,�?? J.Opt. Soc. Am. B 19, 2148-2155 (2002)
[CrossRef]

Nature

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P. St.J. Russell, F. Ominetto, A. Efimov, and A.J. Taylor, �??Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,�?? Nature 424, 511-515, 31st July (2003).
[CrossRef] [PubMed]

Opt. Commun.

M. Seefeldt, A. Heuer and R. Menzel, �??Compact white-light source with an average power of 2.4 W and 900 nm spectral bandwidth,�?? Opt. Commun. 216, 199-202 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

J.D. Harvey, R. Leonhardt, S. Coen, G.K.L. Wong, J.C. Knight, W.J. Wadsworth and P. St.J. Russell, �??Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,�?? Opt. Lett. 28, 2225-2227 (2003)
[CrossRef] [PubMed]

J.M. Dudley, S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

J.K. Ranka, R.S. Windeler and A.J. Stentz: �??Visible continuum generation in air�??silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000)
[CrossRef]

T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, J.J. Miret, P. Andres and M.V. Andres, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999).
[CrossRef]

J.C. Knight, T.A. Birks, P. St.J. Russell, and D.M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996); Errata, Opt. Lett. 22, 484-485 (1997).
[CrossRef] [PubMed]

D. Mogilevtsev, T.A. Birks and P. St.J. Russell, �??Group-velocity dispersion in photonic crystal fibres,�?? Opt. Lett. 23, 1662-1664 (1998)
[CrossRef]

S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P. St.J. Russell: �??White-light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

Optical Fibre Conference Feb. 26 1999

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, �??The analogy between photonic crystal fibres and step index fibres,�?? Optical Fibre Conference, Paper FG4-1, pages 114-116, Friday, February 26 1999.

Other

G.P. Agrawal, Nonlinear fiber optics, (Academic Press, 2nd edition, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Measured dispersion curves for fibres G, O and P, together with the dispersion calculated for a regular PCF with round holes and pitch, Λ, 3 µm and d/Λ=0.3. A dashed vertical line indicates the pump wavelength, 1.064 µm; (b) Nonlinear phasematching diagram for the process 2ω pumpω signal + ω idler, calculated from the measured dispersion curve of fibre G for input powers P=14 W (blue curve); P=140 W (green curve); P=1400 W (red curve). Circles: measured parametric wavelengths corresponding to pump wavelength offset from λ 0 for fibres C, F, G, H, I, L (Table 1).

Fig. 2.
Fig. 2.

SEM of fibre O. Λ=2.97, d/Λ=0.39, λ0=1065 nm

Fig. 3.
Fig. 3.

Measured output continuum spectra from 100 m of Nufern 1000-HP single mode fibre. False colour scale in dBm/5nm bandwidth.

Fig. 4.
Fig. 4.

(a) Output spectra for 6m length of PCF L showing strong optical parametric generation in the normal dispersion regime; (b) Signal output for a 2.5 m length of PCF L with 2mW pump and 9.5 (blue), 4.2 (red), 1.4 (purple), 0.07 (green) µW seed. Pump only, no seed, black. 1µW cw seed is 4000 photons in 600 ps. Spectrometer resolution 0.1 nm.

Fig. 5.
Fig. 5.

(a) Output spectra for 3m lengths PCFs A, C, F, G, H, I showing strong optical parametric generation in the normal dispersion regime, input power 10–20 mW. Spectrometer resolution 0.2 nm. Idler wavelengths longer than 1750 nm are not measured with this spectrometer. (b) Power dependence of spectra for fibre B generating λ signal=716 nm.

Fig. 6.
Fig. 6.

Detail of spectra from Fig. 5(b), fibre B. Spectrometer resolution 0.2 nm. (a) Line width (full width half maximum) of the output at the pump wavelength (1064 nm, red dashed line) and the OPG signal wavelength (716 nm, green solid line). (b) Normalised output spectra at the OPG signal wavelength for low and high input powers.

Fig. 7.
Fig. 7.

Example output spectra for measurement of gain in 2.5 m of PCF L using a CW diode probe. Pump power 4 mW (920 W peak) at 1064 nm, seed power 15 µW at 1315 nm. Green trace, pump only; red trace, probe only; blue trace, pump and probe. Spectrometer resolution 0.1 nm.

Fig. 8.
Fig. 8.

Measured output continuum spectra from (a) 1 m, (b) 3m, (c) 20 m and (d) 100 m of fibre P. False colour scale in dBm/5nm bandwidth.

Fig. 9.
Fig. 9.

Output spectra for 20 m lengths of fibres at 30 mW input power. (a) logarithmic scale, fibre O (red trace) and P (blue trace), (b) linear scale, fibre P (arbitrary units, normalised to residual pump peak at 1064 nm).

Tables (1)

Tables Icon

Table 1. Parametric generation wavelengths for the fibres studied.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 k pump = k signal + k idler + 2 γ P
2 ω pump = ω signal + ω idler
γ = 2 π n 2 λ A eff
β 2 = λ 2 2 π c D

Metrics