Abstract

By prism-coupling an ordinary radiation mode into a lithium niobate planar waveguide, a second harmonic extraordinary guided mode can be generated if the proper coupling angle is chosen. By measuring this angle, the effective index of the radiation mode and thus of the interacting guided mode can be determined. This fact is exploited for the characterization of reverse-proton-exchanged waveguides, whose lowest order modes cannot be efficiently prism-coupled due to their confinement inside the sample.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
    [Crossref]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealing and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–182 (2002).
    [Crossref]
  3. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
    [Crossref]
  4. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [Crossref]
  5. J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
    [Crossref]
  6. Y. N. Korkishko and V. A. Fedorov, Ion exchange in single crystals for integrated optics and optoelectronics (Cambridge International Science Publishing, Cambridge, 1999), Chap.3.
  7. A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
    [Crossref]
  8. A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
    [Crossref]
  9. Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010 (1997).
    [Crossref]
  10. R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
    [Crossref]
  11. G. I. Stegeman, “Introduction to nonlinear guided wave optics”, in Guided Wave Nonlinear Optics,D. B. Ostrowsky and R. Reinisch, ed. (Kluwer Academic Publishers, The Netherlands, 1992).
    [Crossref]

2003 (1)

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

2002 (1)

2001 (2)

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
[Crossref]

1998 (1)

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

1997 (1)

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010 (1997).
[Crossref]

1993 (1)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
[Crossref]

1970 (1)

Amoroso, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

Assanto, G.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

Cabrera, J. M.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

Caccavale, F.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Cino, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

Conti, C.

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

Di Falco, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

Di Lallo, A.

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

Fedorov, V. A.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010 (1997).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, Ion exchange in single crystals for integrated optics and optoelectronics (Cambridge International Science Publishing, Cambridge, 1999), Chap.3.

Fejer, M. M.

Fujimura, M.

Gonella, F.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
[Crossref]

Korkishko, Y. N.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010 (1997).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, Ion exchange in single crystals for integrated optics and optoelectronics (Cambridge International Science Publishing, Cambridge, 1999), Chap.3.

Kurz, J. R.

Leo, G.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

Marangoni, M.

R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
[Crossref]

Morozova, T. M.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Olivares, J.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

Osellame, R.

R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
[Crossref]

Parameswaran, K. R.

Parisi, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

Ramponi, R.

R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
[Crossref]

Riva Sanseverino, S.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

Roussev, V.

Route, R. K.

Segato, F.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “Introduction to nonlinear guided wave optics”, in Guided Wave Nonlinear Optics,D. B. Ostrowsky and R. Reinisch, ed. (Kluwer Academic Publishers, The Netherlands, 1992).
[Crossref]

Tien, P. K.

Ulrich, R.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
[Crossref]

Appl. Phys. Lett. (3)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
[Crossref]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett.,  78, 2098–2100 (2001).
[Crossref]

IEEE Phot. Technol. Lett. (2)

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Phot. Technol. Lett. 13, 323 (2001).
[Crossref]

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, and S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange,” IEEE Phot. Technol. Lett. 15, 443 (2003).
[Crossref]

J. Appl. Phys. (1)

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010 (1997).
[Crossref]

J. Opt. Soc. Am A (1)

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am A 15, 1838–1842 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (2)

Y. N. Korkishko and V. A. Fedorov, Ion exchange in single crystals for integrated optics and optoelectronics (Cambridge International Science Publishing, Cambridge, 1999), Chap.3.

G. I. Stegeman, “Introduction to nonlinear guided wave optics”, in Guided Wave Nonlinear Optics,D. B. Ostrowsky and R. Reinisch, ed. (Kluwer Academic Publishers, The Netherlands, 1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Typical dispersion curves of the extraordinary and ordinary refractive indices of the substrate,nes and nos, ad of the film, nef and nof, for a RPE lithium niobate waveguide. The effective indices (neff) of ordinary radiation modes at λ=1.55µm (continuos range) and of extraordinary guided modes at λ=0.775µm (discrete values) are evidenced with a continuos and a dashed line, respectively, so to evidence the possibility of a birefringence phase matching.

Fig. 2.
Fig. 2.

Experimental set-up. LS: Nd:YAG pumped parametric amplifier; VA: variable attenuator; BS: beam-splitter; PD1: InGaAs photo-diode; D: diaphragm; CL: cylindrical lens (f=100mm); WG: waveguide; RS: rotating stage; PD2: Si photo-diode.

Fig. 3.
Fig. 3.

Extraordinary refractive index profile of #1 at λ=0.775µm, as calculated from the first set of neff reported in Table 1.

Tables (1)

Tables Icon

Table 1. Effective indices neff at λ=0.775µm for #1 and #2, as determined from the coupling angles of the ordinary radiation modes at λ=1.55µm giving phase-matching [a], and from m-lines spectroscopy at λ=0.775µm with a Ti:sapphire laser [b].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff , m 2 ω = n eff ω

Metrics