Abstract

We report the production of color centers in LiF single crystals by ultrashort high intensity laser pulses (60fs, 10 GW). An intensity threshold for color centers creation of 2 TW/cm2 was determined, which is slightly smaller than the continuum generation threshold. We could identify a large amount of F centers that gave rise to aggregates such as F2, F2+ and F3+. The proposed mechanism of formation is based on multiphoton excitation that also produce short lived F2+ centers. It is also shown that it is possible to write tracks in the LiF crystals with dimensional control.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Gellermann, �??Color center lasers,�?? J. Phys. Chem. Solids 52, 249-297 (1991)
    [CrossRef]
  2. T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Harwood (Academic Publisher, Switzerland, 1994)
  3. G. Baldacchini and R. M. Montereali, �??New perspectives of coloured LiF for optoelectronic devices,�?? Opt. Mat. 16, 53-61 (2001)
    [CrossRef]
  4. V. V. Ter-Mikirtychev, �??Efficient room-temperature tunable lasers and passive Q-switchers based on LiF:F2 - crystals,�?? Opt. Commun. 119, 109-112 (1995)
    [CrossRef]
  5. K. M. Davis, K. Miura, S. Sugimoto and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996)
    [CrossRef] [PubMed]
  6. R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta and S. De Silvestri, �??Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,�?? Electron. Lett. 38, 964-965 (2002)
    [CrossRef]
  7. G. Baldacchini, F. Bonfigli, F. Flora, R. M. Montereali, D. Murra, E. Nichelatti, A. Faenov and T. Pikuz, �??High-contrast photoluminescent patterns in lithium fluoride crystals produced by soft x-rays from a laser-plasma source,�?? Appl. Phys. Lett. 80, 4810-4812 (2002)
    [CrossRef]
  8. R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000�? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584-588 (1970)
    [CrossRef]
  9. R. L. Fork, C. V. Shank, C. Ifirlimann and R. Yen, �??Femtosecond white-light continuum pulses,�?? Opt. Lett. 8, 1-3 (1983)
    [CrossRef] [PubMed]
  10. G. Yang and Y. R. Shen, �??Spectral broadening of ultrashort pulses in a nonlinear medium,�?? Opt. Lett. 9, 510-512 (1984)
    [CrossRef] [PubMed]
  11. V. V. Ter-Mikirtychev and T. Tsuboi, �??Stable room-temperature tunable color center lasers and passive Q-switchers,�?? Prog. Quantum Electron. 20, 219-268 (1996)
    [CrossRef]
  12. A. Brodeur and S. L. Chin, �??Band-Gap Dependence of the Ultrafast White-Light Continuum,�?? Phys. Rev. Lett. 80, 4406-4409 (1998)
    [CrossRef]
  13. N. Bloembergen, �??Laser-induced electric breakdown in solids,�?? IEEE J. Quantum Elecctron. QE10, pp. 375-386 (1974)
    [CrossRef]
  14. G. Baldacchini, �??Colored LiF: an optical material for all seasons,�?? J. Luminescence 100, 333-343 (2002)
    [CrossRef]
  15. N. D. Vieira Jr., I. M. Ranieri and S. P. Morato, �??Room-temperature visible laser action of F aggregated centers in LiF-Mg, OH crystals,�?? Phys. Stat. Sol. (a) 73K, K115-K117 (1982)
    [CrossRef]
  16. L. F. Mollenauer, D. M. Bloom and H. Guggenheim, �??Simple 2-step photo-ionization yields high �?? densities of laser-active F2 + centers,�?? Appl. Phys. Lett. 33, 506-509 (1978)
    [CrossRef]
  17. R. E. Samad and N. D. Vieira Jr, �??Geometrical method for femtosecond pulse laser damage threshold determination,�?? submitted to publication in J. Opt. Soc. Am. B.
  18. T. F. Gallagher, �??Above-threshold ionization in low-frequency limit,�?? Phys. Rev. Lett. 61, 2304-2307 (1998)
    [CrossRef]

Appl. Phys. Lett. (2)

G. Baldacchini, F. Bonfigli, F. Flora, R. M. Montereali, D. Murra, E. Nichelatti, A. Faenov and T. Pikuz, �??High-contrast photoluminescent patterns in lithium fluoride crystals produced by soft x-rays from a laser-plasma source,�?? Appl. Phys. Lett. 80, 4810-4812 (2002)
[CrossRef]

L. F. Mollenauer, D. M. Bloom and H. Guggenheim, �??Simple 2-step photo-ionization yields high �?? densities of laser-active F2 + centers,�?? Appl. Phys. Lett. 33, 506-509 (1978)
[CrossRef]

Electron. Lett. (1)

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta and S. De Silvestri, �??Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,�?? Electron. Lett. 38, 964-965 (2002)
[CrossRef]

IEEE J. Quantum Elecctron. (1)

N. Bloembergen, �??Laser-induced electric breakdown in solids,�?? IEEE J. Quantum Elecctron. QE10, pp. 375-386 (1974)
[CrossRef]

J. Luminescence (1)

G. Baldacchini, �??Colored LiF: an optical material for all seasons,�?? J. Luminescence 100, 333-343 (2002)
[CrossRef]

J. Opt. Soc. Am. B. (1)

R. E. Samad and N. D. Vieira Jr, �??Geometrical method for femtosecond pulse laser damage threshold determination,�?? submitted to publication in J. Opt. Soc. Am. B.

J. Phys. Chem. Solids (1)

W. Gellermann, �??Color center lasers,�?? J. Phys. Chem. Solids 52, 249-297 (1991)
[CrossRef]

Opt. Commun. (1)

V. V. Ter-Mikirtychev, �??Efficient room-temperature tunable lasers and passive Q-switchers based on LiF:F2 - crystals,�?? Opt. Commun. 119, 109-112 (1995)
[CrossRef]

Opt. Lett. (3)

Opt. Mat. (1)

G. Baldacchini and R. M. Montereali, �??New perspectives of coloured LiF for optoelectronic devices,�?? Opt. Mat. 16, 53-61 (2001)
[CrossRef]

Phys. Rev. Lett. (3)

R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000�? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584-588 (1970)
[CrossRef]

T. F. Gallagher, �??Above-threshold ionization in low-frequency limit,�?? Phys. Rev. Lett. 61, 2304-2307 (1998)
[CrossRef]

A. Brodeur and S. L. Chin, �??Band-Gap Dependence of the Ultrafast White-Light Continuum,�?? Phys. Rev. Lett. 80, 4406-4409 (1998)
[CrossRef]

Phys. Stat. Sol. (a) (1)

N. D. Vieira Jr., I. M. Ranieri and S. P. Morato, �??Room-temperature visible laser action of F aggregated centers in LiF-Mg, OH crystals,�?? Phys. Stat. Sol. (a) 73K, K115-K117 (1982)
[CrossRef]

Prog. Quantum Electron. (1)

V. V. Ter-Mikirtychev and T. Tsuboi, �??Stable room-temperature tunable color center lasers and passive Q-switchers,�?? Prog. Quantum Electron. 20, 219-268 (1996)
[CrossRef]

Other (1)

T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Harwood (Academic Publisher, Switzerland, 1994)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Samples irradiation experimental Setup.

Fig. 2.
Fig. 2.

(a) green emission and white light generation along the beam path while under irradiation by the femtosecond pulses (the pulses came from the left); (b) schematic representation of the light shapes of the preceding photograph: the color centers are created before the beamwaist (focal point) and before the white light. There are no color centers after the beamwaist because at the waist position crystal breakdown occurs, scattering the laser beam; (c) Emission of F3+ centers when excited by white light (the laser entered the sample from the top surface); note that these tracks start near the entrance surface of the sample, grow larger in radius and then get smaller near the beam focus position.

Fig. 3.
Fig. 3.

Absorption spectra of the tracks created in LiF crystals by 750µJ, 60fs laser pulses (following irradiation and after ten days).

Fig. 4.
Fig. 4.

Photography of the color center tracks, as seen longitudinally along the beam propagation axis, by an optical microscope. The centers creation intensity threshold could be determined by the laser power and the radius of the profile, seen in the picture.

Tables (1)

Tables Icon

Table 1. Spectral characteristics of color centers in LiF. λa is the absorption central wavelength, Ea is the absorption peak, Δ is the half-width of the absorption band and λe is the emission central wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I t = P 0 e 1 π r max 2
E ( V m ) = 2 ε 0 cn I = 27.43 I ( W m 2 ) n
U p = e 2 E 0 2 4 m ω 0 2

Metrics