Abstract

We report the sub-wavelength patterning of the optical near-field by total internal reflection illumination of a regular array of resonant gold nano-particles. Under appropriate conditions, the in-plane coupling between Localized Surface Plasmon (LSP) fields gives rise to sub-wavelength light spots between the structures. Measurements performed with an Apertureless Scanning Near-Field Optical Microscope (ASNOM) show a good agreement with theoretical predictions based on the Green dyadic method. This concept might offer a convenient way to elaborate extended optical trap landscapes for manipulation of sub-micrometer systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. M. Vigoureux and D. Courjon, �??Detection of non radiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion�??, Appl. Opt. 31, 3170 (1992)
    [CrossRef] [PubMed]
  2. J. T. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, �??Guiding of a one-dimensional optical beam with nanometer diameter,�?? Opt. Lett. 22, 475 (1997)
    [CrossRef] [PubMed]
  3. H. A. Bethe, �??Theory of Diffraction by Small Holes,�?? Phys. Rev. 66, 163 (1944)
    [CrossRef]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667 (1998)
    [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, �??Beaming light from a Subwavelength Aperture,�?? Science 297 (2002)
    [CrossRef] [PubMed]
  6. C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas-des-Francs, and C. Girard, �??Imaging the Local Density of States of Optical Corrals,�?? Phys. Rev. Lett. 88, 097402 (2002)
    [CrossRef] [PubMed]
  7. C. Bohren and D. Huffman, Absorption and scattering of light by small particles (John Wiley, New-York, 1983).
  8. M. Meier, A. Wokaum, and P. F. Liao, �??Enhanced fields on rough surfaces: dipolar interaction among particles of sizes exceeding the Rayleigh limit,�?? J. Opt. Soc. Am. B 2, 931 (1985).
    [CrossRef]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, �??Metal Nanoparticle Gratings: Influence of Dipolar Particle on the Plasmon Resonance,�?? Phys. Rev. Lett. 84, 4721 (2000).
    [CrossRef] [PubMed]
  10. N. Felidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salermo, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,�?? Phys. Rev. B 65, 075419 (2002)
    [CrossRef]
  11. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, �??Interparticles coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,�?? Appl. Phys. Lett. 78, 802 (2001)
    [CrossRef]
  12. O. J. F. Martin, C. Girard, and A. Dereux, �??Generalized Field Propagator for Electromagnetic Scattering and Light Confinement,�?? Phys. Rev. Lett. 74, 526 (1995).
    [CrossRef] [PubMed]
  13. J.-J. Greffet and R. Carminati, �??Image formation in near-field optics,�?? Progress in Surface Science 56, 133 (1997).
    [CrossRef]
  14. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, �??Generation of optical standing waves around mesoscopic surface structure: scattering and light confinement,�?? Phys. Rev. B 52, 2889 (1995)
    [CrossRef]
  15. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>
    [CrossRef] [PubMed]
  16. M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature (London) 426, 421 (2003)
    [CrossRef]
  17. Y. Inouye and S. Kawata, �??Near-field scanning optical microscope with a metallic probe tip,�?? Opt. Lett. 19, 159 (1994)
    [CrossRef] [PubMed]
  18. F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623 (1994)
    [CrossRef]
  19. R. Bachelot, P. Gleyzes, and A. C. Boccara, �??Near-field optical microscope based on local perturbation of a diffraction spot,�?? Opt. Lett. 20, 1924 (1995)
    [CrossRef] [PubMed]
  20. R. Hillenbrand and K. Keilmann, �??Complex Optical Constants on a Subwavelength Scale,�?? Phys. Rev. Lett. 85, 3029 (2000)
    [CrossRef] [PubMed]
  21. A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J. J. Greffet, �??Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy,�?? J. Opt. Soc. Am. A 15, 109 (1998)
    [CrossRef]
  22. S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J. E. Broquin, and V. Minier, �??Apertureless scanning near-field optical microscopy for ion exchange waveguide characterization,�?? Journal of Microscopy 209, 155 (2002).
    [CrossRef]
  23. J. A. Porto, P. Johansson, S. P. Apell, and T. López-Rios, �??Resonance shift effects in apertureless scanning near-field optical microscopy,�?? Phys. Rev. B 67, 085409 (2003)
    [CrossRef]
  24. A. Pack, W. Grill, and R. Wannemacher, �??Apertureless near-field optical microscopy of metallic nanoparticles,�?? Ultramicroscopy 94, 109 (2003)
    [CrossRef]
  25. R. Fikri, T. Grosges, and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: the need for probe-vibration modeling,�?? Opt. Lett. 28, 2147 (2003)
    [CrossRef] [PubMed]
  26. S. Kawata and T. Sugiura, �??Movement of micrometer-sized particles in the evanescent field of a laser beam,�?? Opt. Lett. 17, 772 (1992)
    [CrossRef] [PubMed]
  27. K. Okamoto and S. Kawata, �??Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,�?? Phys. Rev. Lett. 83, 4534 (1999)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, �??Interparticles coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,�?? Appl. Phys. Lett. 78, 802 (2001)
[CrossRef]

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623 (1994)
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Journal of Microscopy (1)

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J. E. Broquin, and V. Minier, �??Apertureless scanning near-field optical microscopy for ion exchange waveguide characterization,�?? Journal of Microscopy 209, 155 (2002).
[CrossRef]

Nature (London) (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature (London) 426, 421 (2003)
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667 (1998)
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. (1)

H. A. Bethe, �??Theory of Diffraction by Small Holes,�?? Phys. Rev. 66, 163 (1944)
[CrossRef]

Phys. Rev. B (3)

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Rios, �??Resonance shift effects in apertureless scanning near-field optical microscopy,�?? Phys. Rev. B 67, 085409 (2003)
[CrossRef]

N. Felidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salermo, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,�?? Phys. Rev. B 65, 075419 (2002)
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, �??Generation of optical standing waves around mesoscopic surface structure: scattering and light confinement,�?? Phys. Rev. B 52, 2889 (1995)
[CrossRef]

Phys. Rev. Lett. (5)

R. Hillenbrand and K. Keilmann, �??Complex Optical Constants on a Subwavelength Scale,�?? Phys. Rev. Lett. 85, 3029 (2000)
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, �??Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,�?? Phys. Rev. Lett. 83, 4534 (1999)
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, �??Metal Nanoparticle Gratings: Influence of Dipolar Particle on the Plasmon Resonance,�?? Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, and A. Dereux, �??Generalized Field Propagator for Electromagnetic Scattering and Light Confinement,�?? Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas-des-Francs, and C. Girard, �??Imaging the Local Density of States of Optical Corrals,�?? Phys. Rev. Lett. 88, 097402 (2002)
[CrossRef] [PubMed]

Progress in Surface Science (1)

J.-J. Greffet and R. Carminati, �??Image formation in near-field optics,�?? Progress in Surface Science 56, 133 (1997).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, �??Beaming light from a Subwavelength Aperture,�?? Science 297 (2002)
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. Pack, W. Grill, and R. Wannemacher, �??Apertureless near-field optical microscopy of metallic nanoparticles,�?? Ultramicroscopy 94, 109 (2003)
[CrossRef]

Other (1)

C. Bohren and D. Huffman, Absorption and scattering of light by small particles (John Wiley, New-York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Theoretical map of the near-field electric intensity calculated 100nm above a 5×6 array (640nm period) of gold pads (100×100×40)nm3 (location represented by the black squares). The illumination is performed by a plane wave (633nm, TM polarization) under total internal reflection (45° incidence angle). The normalization at each point is done with respect to the electric intensity in the observation plane in the absence of any nanostructure.

Fig. 2.
Fig. 2.

Schematic description of our ASNOM set-up

Fig. 3.
Fig. 3.

(a–b) 2.4µm×2.4µm images recorded simultaneously above the fabricated sample. (a) AFM topography, (b) ASNOM image (λ=632.8nm, TM polarization and 45° incidence angle). (c–d) Comparison over a unit cell of the theoretical near-field electric intensity (c) and the experimental measurements (d) (zoom in on the square area drawn on Fig. 3(b)).

Fig. 4.
Fig. 4.

Dependence of the ASNOM signal on the tip-sample distance when precisely located above one of the inter-particle maxima (experimental data in black, fitting in red).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ x Δ k x 2 π

Metrics