Abstract

We present a compact source of polarization-entangled photon pairs at a wavelength of 805 nm using a violet single-mode laser diode as the pump source of type-II spontaneous parametric down-conversion. The source exhibits entanglement and pair-rate comparable to conventional systems utilizing large frame ion lasers thus significantly increases the practicality of novel quantum information or quantum metrology applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Shor, �??Polynomial-time algorithms for prime number factorization and discrete logarithms on a quantum computer,�?? SIAM J. Comp. 26, 1484�??1509 (1997).
    [CrossRef]
  2. Ch. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, �??Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,�?? Phys. Rev. Lett. 70, 1895�??1899 (1993).
    [CrossRef] [PubMed]
  3. R. Cleve and H. Buhrman, �??Substituting quantum entanglement for communication,�?? Phys. Rev. A 56, 1201�??1204 (1997).
    [CrossRef]
  4. A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661�??663 (1991).
    [CrossRef] [PubMed]
  5. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, �??Proposed experiment to test local hidden-variable theories,�?? Phys. Rev. Lett. 23, 880�??884 (1969).
    [CrossRef]
  6. T. Jennewein, Ch. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, �??Quantum cryptography with entangled photons,�?? Phys. Rev. Lett. 84, 4729�??4732 (2000).
    [CrossRef] [PubMed]
  7. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, �??Entangled state quantum cryptography: eavesdropping on the Ekert protokol,�?? Phys. Rev. Lett. 84, 4733�??4736 (2000).
    [CrossRef] [PubMed]
  8. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, �??Quantum cryptography using entangled photons in energy-time bell states,�?? Phys. Rev. Lett. 84, 4737�??4740 (2000).
    [CrossRef] [PubMed]
  9. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, �??Experimental quantum teleportation,�?? Nature (London) 390, 575�??579 (1997).
    [CrossRef]
  10. T. B. Pittman, B. C. Jacobs, and J. D. Franson, �??Demonstration of nondeterministic quantum logic operations using linear optical elements,�?? Phys. Rev. Lett. 88, 257902 (2002).
    [CrossRef] [PubMed]
  11. A. Migdall, �??Correlated-photon metrology without absolute standards,�?? Physics Today January, 41�??46 (1999).
    [CrossRef]
  12. M. C. Teich and B. E. A. Saleh, �??Entangled-photon microscopy, spectroscopy, and display,�?? U. S. Patent No. 5,796,477 (1998).
  13. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, �??New high-intensity source of polarization-entangled photon pairs,�?? Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  14. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, �??Pulsed energy-time entangled twin-photon source for quantum communication,�?? Phys. Rev. Lett. 82, 2594�??2597 (1999).
    [CrossRef]
  15. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, �??Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26�??28 (2001).
    [CrossRef]
  16. J. Volz, Ch. Kurtsiefer, and H. Weinfurter, �??Compact all-solid-state source of polarization-entangled photon pairs,�?? Appl. Phys. Lett. 79, 869�??871 (2001).
    [CrossRef]
  17. K. Sanaka, K. Kawahara, and T. Kuga, �??New high-efficiency source of photon pairs for engineering quantum entanglement,�?? Phys. Rev. Lett. 86, 5620�??5623 (2001).
    [CrossRef] [PubMed]
  18. Ch. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, �??A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,�?? <a href="http://lanl.arxiv.org/abs/quant-ph/0305092.">http://lanl.arxiv.org/abs/quant-ph/0305092</a>
  19. D. Dehlinger and M. W. Mitchell, �??Entangled photon apparatus for the undergraduate laboratory,�?? Am. J. Phys. 70, 898�??902 (2002).
    [CrossRef]
  20. S. Nakamura and G. Fasol, The blue laser diode (Springer, Heidelberg, 1997).
  21. Ch. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High efficiency entangled photon pair collection in type II parametric fluorescence,�?? Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  22. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, �??Effective fiber-coupling of entangled photons for quantum communication,�?? Opt. Commun. 227, 343�??348 (2003).
    [CrossRef]
  23. M. Oberparleiter and H. Weinfurter, �??Cavity-enhanced generation of polarization-entangled photon pairs,�?? Opt. Commun. 183, 133�??137 (2000).
    [CrossRef]
  24. M. Aspelmeyer, H. R. B¨ohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, �??Long-distance free-space distribution of quantum entanglement,�?? Science 301, 621�??623 (2003).
    [CrossRef] [PubMed]

Am. J. Phys.

D. Dehlinger and M. W. Mitchell, �??Entangled photon apparatus for the undergraduate laboratory,�?? Am. J. Phys. 70, 898�??902 (2002).
[CrossRef]

Appl. Phys. Lett.

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, �??Compact all-solid-state source of polarization-entangled photon pairs,�?? Appl. Phys. Lett. 79, 869�??871 (2001).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, �??Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26�??28 (2001).
[CrossRef]

Nature (London)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, �??Experimental quantum teleportation,�?? Nature (London) 390, 575�??579 (1997).
[CrossRef]

Opt. Commun.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, �??Effective fiber-coupling of entangled photons for quantum communication,�?? Opt. Commun. 227, 343�??348 (2003).
[CrossRef]

M. Oberparleiter and H. Weinfurter, �??Cavity-enhanced generation of polarization-entangled photon pairs,�?? Opt. Commun. 183, 133�??137 (2000).
[CrossRef]

Phys. Rev. A

Ch. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High efficiency entangled photon pair collection in type II parametric fluorescence,�?? Phys. Rev. A 64, 023802 (2001).
[CrossRef]

R. Cleve and H. Buhrman, �??Substituting quantum entanglement for communication,�?? Phys. Rev. A 56, 1201�??1204 (1997).
[CrossRef]

Phys. Rev. Lett.

A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661�??663 (1991).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, �??Proposed experiment to test local hidden-variable theories,�?? Phys. Rev. Lett. 23, 880�??884 (1969).
[CrossRef]

T. Jennewein, Ch. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, �??Quantum cryptography with entangled photons,�?? Phys. Rev. Lett. 84, 4729�??4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, �??Entangled state quantum cryptography: eavesdropping on the Ekert protokol,�?? Phys. Rev. Lett. 84, 4733�??4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, �??Quantum cryptography using entangled photons in energy-time bell states,�?? Phys. Rev. Lett. 84, 4737�??4740 (2000).
[CrossRef] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, �??Demonstration of nondeterministic quantum logic operations using linear optical elements,�?? Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

K. Sanaka, K. Kawahara, and T. Kuga, �??New high-efficiency source of photon pairs for engineering quantum entanglement,�?? Phys. Rev. Lett. 86, 5620�??5623 (2001).
[CrossRef] [PubMed]

Ch. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, �??Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,�?? Phys. Rev. Lett. 70, 1895�??1899 (1993).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, �??New high-intensity source of polarization-entangled photon pairs,�?? Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, �??Pulsed energy-time entangled twin-photon source for quantum communication,�?? Phys. Rev. Lett. 82, 2594�??2597 (1999).
[CrossRef]

Physics Today

A. Migdall, �??Correlated-photon metrology without absolute standards,�?? Physics Today January, 41�??46 (1999).
[CrossRef]

Science

M. Aspelmeyer, H. R. B¨ohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, �??Long-distance free-space distribution of quantum entanglement,�?? Science 301, 621�??623 (2003).
[CrossRef] [PubMed]

SIAM J. Comp.

P. Shor, �??Polynomial-time algorithms for prime number factorization and discrete logarithms on a quantum computer,�?? SIAM J. Comp. 26, 1484�??1509 (1997).
[CrossRef]

Other

Ch. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, �??A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,�?? <a href="http://lanl.arxiv.org/abs/quant-ph/0305092.">http://lanl.arxiv.org/abs/quant-ph/0305092</a>

S. Nakamura and G. Fasol, The blue laser diode (Springer, Heidelberg, 1997).

M. C. Teich and B. E. A. Saleh, �??Entangled-photon microscopy, spectroscopy, and display,�?? U. S. Patent No. 5,796,477 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic set-up of the source. The single-mode cw laser diode operating at 402.6 nm pumps a 2 mm thick BBO crystal and produces polarization-entangled photon pairs at 805.2 nm collected into single-mode fibres. For compensation of the walk-off, two additional BBO crystals preceded by a half-wave retarder are used.

Fig. 2.
Fig. 2.

Single (1) and coincidence (2) count rates depending on the pump power measured right behind the violet laser diode.

Fig. 3.
Fig. 3.

Spectral distributions of the down-converted light collected into single-mode fibres. Both photons of the pair have nearly the same wavelength with separation only 0.22 nm around the degeneracy wavelength of 805.2 nm. The least-square Gaussian fit (solid lines) to measured data points shows FWHMs of 6.03±0.14 nm (3) and 6.24±0.56 (4), respectively. The offset of 44000 counts is due to the dark counts of the Si APDs.

Fig. 4.
Fig. 4.

Polarization correlations between photons of a pair measured in the H/V (5) and +45°/-45° (6) polarization basis. The visibilities obtained from a sin2 fit (solid lines) to the measured coincidence count rates are 98.3±0.1% and 94.3±0.2%, respectively.

Metrics