Abstract

A graphical user interface is used to program sequences of analog phase patterns onto a 512×512 pixel, electrically-addressed spatial light modulator (SLM). Hand sketches made with a digital pen are used to prescribe the footprints, velocities and trajectories of multiple, independently-controlled diffracted spots. The interface is intended to demonstrate to potential end-users, who are not knowledgeable about diffractive optical design, to what degree SLM’s may be considered to produce arbitrary multi-spot beam steering. Using the interface, scanning sequences are created, programmed, run through, and diffracted from a SLM that simultaneously scans multiple patterns on distinct trajectories.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Ge, M. Duelli, and R. W. Cohn, �??Enumeration of illumination and scanning modes from real-time spatial light modulators,�?? Opt. Express 7, 403-416 (2000). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403</a>
    [CrossRef] [PubMed]
  2. K. Visscher, S. P. Gross, and S. M. Block, �??Construction of multiple-beam optical traps with nanometer-level position sensing,�?? IEEE J. Sel. Top. Quant. Electr. 2, 1066-1076 (1996).
    [CrossRef]
  3. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, �??�??Design of a scanning laser optical trap for multiparticle manipulation,�??�?? Rev. Sci. Instrum. 71, 2196�??2200 (2000).
    [CrossRef]
  4. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, �??�??Optical particle trapping with computer-generated holograms written on a liquid-crystal display,�??�?? Opt. Lett. 24, 608�??610 (1999).
    [CrossRef]
  5. J.E. Curtis, B.A. Koss and D.G. Grier, �??Dynamic holographic optical tweezers, Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  6. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Applications of spatial light modulators in atom optics," Opt. Express 11, 158-166 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-158">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-158</a>.
    [CrossRef] [PubMed]
  7. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles," Opt. Express 10, 1550-1556 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>
    [CrossRef] [PubMed]
  8. Transition of Optical Processors into Systems 1995, D. Casasent, ed., Proc. SPIE 2489, (1995).
  9. Logitech® io�?� digital pen and notebook, <a href= "http://www.logitech.com/">http://www.logitech.com/</a>
  10. R. W. Cohn and M. Liang, "Approximating fully complex spatial modulation with pseudo-random phaseonly modulation," Appl. Opt. 33, 4406-4415, (1994).
    [CrossRef] [PubMed]
  11. R. W. Cohn and L. G. Hassebrook, �??Representations of fully complex functions on real-time spatial light modulators,�?? in Optical Information Processing, F. T. S. Yu and S. Jutamulia, eds., (Cambridge U. Press, Cambridge, UK, 1998), pp. 396-432.
  12. J. Stockley, S. Serati, X. Xun, and R. W. Cohn, "Liquid crystal spatial light modulator for multispot beam steering," in Free Space Laser Communication and Active Laser Illumination III, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5160, (in press, 2003).
  13. Boulder Nonlinear System, Inc., <a href= "http://www.bnonlinear.com/pages/512techspecs.html">http://www.bnonlinear.com/pages/512techspecs.html</a>
  14. G. Chaikin, �??An algorithm for high speed curve generation,�?? Computer Graphics and Image Processing 3, 346-349 (1974).
    [CrossRef]
  15. J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, �??The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,�?? J Mod. Opt. 45, 1231-1237 (1998)
    [CrossRef]
  16. O. Bryngdahl, �??Axicon,�?? IBM Technical Disclosure Bulletin 13, 81 (1970)
  17. R. W. Gerchberg and W. O. Saxton, �??A practical algorithm for the determination of phase from image and diffraction plane pictures,�?? Optik 35, 237-246 (1972).
  18. M. Duelli, M. Reece, and R. W. Cohn, �??Modified minimum-distance criterion for blended random and nonrandom encoding,�?? J. Opt. Soc. Am. A 16, 2425-2438 (1999).
    [CrossRef]
  19. J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev.Lett. 90, 133901 (2003).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Computer Graphics and Image Processing (1)

G. Chaikin, �??An algorithm for high speed curve generation,�?? Computer Graphics and Image Processing 3, 346-349 (1974).
[CrossRef]

IBM Technical Disclosure Bulletin (1)

O. Bryngdahl, �??Axicon,�?? IBM Technical Disclosure Bulletin 13, 81 (1970)

IEEE J. Sel. Top. Quant. Electr. (1)

K. Visscher, S. P. Gross, and S. M. Block, �??Construction of multiple-beam optical traps with nanometer-level position sensing,�?? IEEE J. Sel. Top. Quant. Electr. 2, 1066-1076 (1996).
[CrossRef]

J Mod. Opt. (1)

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, �??The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,�?? J Mod. Opt. 45, 1231-1237 (1998)
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J.E. Curtis, B.A. Koss and D.G. Grier, �??Dynamic holographic optical tweezers, Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Optical Information Processing (1)

R. W. Cohn and L. G. Hassebrook, �??Representations of fully complex functions on real-time spatial light modulators,�?? in Optical Information Processing, F. T. S. Yu and S. Jutamulia, eds., (Cambridge U. Press, Cambridge, UK, 1998), pp. 396-432.

Optik (1)

R. W. Gerchberg and W. O. Saxton, �??A practical algorithm for the determination of phase from image and diffraction plane pictures,�?? Optik 35, 237-246 (1972).

Phys. Rev.Lett. (1)

J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev.Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Stockley, S. Serati, X. Xun, and R. W. Cohn, "Liquid crystal spatial light modulator for multispot beam steering," in Free Space Laser Communication and Active Laser Illumination III, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5160, (in press, 2003).

Transition of Optical Processors into Systems 1995, D. Casasent, ed., Proc. SPIE 2489, (1995).

Rev. Sci. Instrum. (1)

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, �??�??Design of a scanning laser optical trap for multiparticle manipulation,�??�?? Rev. Sci. Instrum. 71, 2196�??2200 (2000).
[CrossRef]

Other (2)

Logitech® io�?� digital pen and notebook, <a href= "http://www.logitech.com/">http://www.logitech.com/</a>

Boulder Nonlinear System, Inc., <a href= "http://www.bnonlinear.com/pages/512techspecs.html">http://www.bnonlinear.com/pages/512techspecs.html</a>

Supplementary Material (2)

» Media 1: AVI (1935 KB)     
» Media 2: AVI (2689 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the system for programming multi-spot beam steering sequences onto the SLM. Support hardware and software for calibration and data collection is also shown.

Fig. 2.
Fig. 2.

Schematic of the beam steering optics with the system configured for the beam steering demonstrations. During calibration the shutter is opened and the camera is moved to the image plane. Visible beam steering experiments are performed using a 10 mW, 532 nm laser together with a 512N15-0532 SLM and a 150 mm achromat for the Fourier transform lens. Laser trapping is performed using a 1W, 1064 nm laser together with a 512N15-1064 SLM and a 45X (0.65 NA) microscope objective for the Fourier transform lens. SF: Spatial filter. BS: beam splitter. FP: focal plane. IP: Image plane.

Fig. 3.
Fig. 3.

The paper template that is used with the digital pen. Sketch for a beam-steering sequence is shown in red.

Fig. 4.
Fig. 4.

Diffraction pattern from the SLM that is composed of the six patterns from the spot palette of Fig. 3. The theoretical efficiency of this diffraction pattern is 25.3%. An area of 210×50 resolution cells of the entire zero-order diffraction area (which is 512×512 resolution cells in all) is shown.

Fig. 5.
Fig. 5.

Portion of the Labview control panel. Note the parameters speed, time, shape, intensity, size which can be adjusted for each spot. The parameter window with “2” indicates that the parameter values displayed are for the second spot selected from the template.

Fig. 6.
Fig. 6.

(1.88 MB) The movie produced from the sketch on the template in Fig. 3. A smoothed version of the sketched trajectories are shown on top of the still image. The full zero order diffraction area is shown (512×512 resolution cells.) The theoretical diffraction efficiency of the multiple patterns varies from 20 to 25 %.

Fig. 7.
Fig. 7.

(2.62 MB) Movie of laser trapping with a translating spot and a translating and rotating elliptic vortex beam. In the still image the red lines are smoothed versions of the hand drawn trajectories, yellow arrows indicate the direction of motion, and yellow lines indicate the tilt of the vortex at points along the trajectory. The movie is annotated with color highlights to indicate the position of the spots and the rotation of the vortex. On-axis light from the SLM is also evident. Note that beads from above and below the image plane come into focus as they are attracted into the beam. Optical power in the spot and the vortex totals ~16 mW during the sequence.

Metrics