Abstract

We demonstrate the use of a transient polarization grating induced by two femtosecond laser pulses propagating in a LiNbO3 crystal for the generation of frequency tunable, narrow-band, picosecond THz pulses. Employing pump pulses with 150 fs duration and 2 μJ energy, the generated THz pulse has an energy up to 1.8 pJ, a pulse duration of 3 – 5 ps and a bandwidth of 0.1 THz. The central frequency can be tuned in the range from 0.5 to 3 THz. The generation efficiency of the transient grating method in comparison to other techniques is discussed. The possibility of shaping the temporal waveform of the THz pulses by simply shaping the spatial intensity distribution of the pump pulses is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, �??Infrared-Phonon-Polariton Resonance of the Nonlinear Susceptibility in GaAs,�?? Phys. Rev. Lett. 90, 055508 (2003).
    [CrossRef] [PubMed]
  2. G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. van der Meer, �??Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses,�?? Phys. Rev. Lett. 83, 1578 (1999).
    [CrossRef]
  3. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, �??Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,�?? Appl. Phys. Lett. 64, 137-139 (1994).
    [CrossRef]
  4. S. �??G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, �??High-power narrow-band terahertz generation using large-aperture photoconductors,�?? IEEE J. Quantum Electron. 35, 1257-1267 (1999).
    [CrossRef]
  5. Messner , M. Sailer , H. Kostner , R.A. Höpfel, �??Coherent generation of tunable, narrow-band THz radiation by optical rectification of femtosecond pulse trains,�?? Appl. Phys B 64, 619-621 (1997).
    [CrossRef]
  6. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, �??Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,�?? Opt. Express 11, 2486-2496 (2003).
    [CrossRef] [PubMed]
  7. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, �??Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,�?? Appl. Phys. Lett. 77, 1244-1246 (2000).
    [CrossRef]
  8. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and A. M. Sergeev, �??Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma,�?? Phys. Rev. E 70 016401 (2004).
    [CrossRef]
  9. N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida, and T. Katsouleas, �??Experimental observation of radiation from Cherenkov wakes in a magnetized plasma,�?? Phys. Rev. Lett. 89, 065003 (2002).
    [CrossRef] [PubMed]
  10. Y.-S. Lee, N. Amer, and W. C. Hurlbut, �??Terahertz pulse shaping via optical rectification in poled lithium niobate,�?? Appl. Phys. Lett. 82, 170 (2003).
    [CrossRef]
  11. P. C. M. Planken, L. D. Noordam, J. T. M. Kennis, and A. Lagendijk, �??Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3,�?? Phys. Rev. B 45, 7106-7114 (1992).
    [CrossRef]
  12. H. J. Bakker, S. Hunsche, and H. Kurz, �??Coherent phonon polaritons as probes of anharmonic phonons in ferroelectrics,�?? Rev. Mod. Phys. 70, 523-536 (1998).
    [CrossRef]
  13. A. G. Stepanov, J. Hebling, and J. Kuhl, �??Frequency and temperature dependence of the TO phononpolariton decay in GaP,�?? Phys. Rev. B 63, 104304 (2001).
    [CrossRef]
  14. T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, �??Heterodyned impulsive stimulated Raman scattering of phonon�??polaritons in LiTaO3 and LiNbO3,�?? J. Chem. Phys. 117, 2882 (2002).
    [CrossRef]
  15. F. Vallée and Ch. Flytzanis, �??Picosecond Phonon-Polariton Pulse Transmission through an Interface,�?? Phys. Rev. Lett. 74, 3281�??3284 (1995).
    [CrossRef] [PubMed]
  16. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  17. G. A. A�??skaryan, �??Cherenkov radiation and transition radiation from electromagnetic waves,�?? Sov. Phys. JETP 37, 594-596 (1962).
  18. D. A. Kleinman, D. H. Austom, �??Theory of Electrooptic Shock Radiation in Nonlinear Optical Media,�?? IEEE J. Quantum Electron. QE-20, 965-970 (1984).
  19. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, �??Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,�?? Phys. Rev. Lett. 53, 1555-1558 (1984).
    [CrossRef]
  20. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, �??Free-space radiation from electro-optic crystals,�?? Appl. Phys. Lett. 56, 506-508 (1990).
    [CrossRef]
  21. J. K. Wahlstrand and R. Merlin, �??Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,�?? Phys. Rev. B 68, 054301 (2003).
    [CrossRef]
  22. Z. G. Lu, P. Campbell, and X.-C. Zhang, �??Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,�?? Appl. Phys. Lett. 71, 593-595 (1997).
    [CrossRef]
  23. J. Hebling, �??Determination of the momentum of impulsively generated phonon polaritons,�?? Phys. Rev. B 65, 092301 (2002).
    [CrossRef]
  24. J. Hebling, A. G. Stepanov, G. Almasi, B.Bartal, and J. Kuhl, �??Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. B 78, 593-599 (2004).
    [CrossRef]
  25. A. G. Stepanov, J. Hebling, J. Kuhl, �??Efficient generation of subpicosecond terahertz radiation by phasematched optical rectification using ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. Lett. 83, 3000-3002 (2003).
    [CrossRef]
  26. K. Kawase, H.Minamide, K. Imai, J. Shikata, H. Ito, �??Injection-seeded terahertz-wave parametric generator with wide tenability,�?? Appl. Phys. Lett. 80, 195-197 (2002).
    [CrossRef]
  27. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  28. B. E. Cole, J. B. Willams, B. T. King, M. S. Sherwin, C. R. Stanley, �??Coherent manipulation of semiconductor quantum bits with terahertz radiation,�?? Nature 410, 60-63 (2001).
    [CrossRef] [PubMed]
  29. T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, �??Typesetting of terahertz waveforms,�?? Opt. Lett. 29, 1802-1804 (2004).
    [CrossRef] [PubMed]

Appl. Phys B (1)

Messner , M. Sailer , H. Kostner , R.A. Höpfel, �??Coherent generation of tunable, narrow-band THz radiation by optical rectification of femtosecond pulse trains,�?? Appl. Phys B 64, 619-621 (1997).
[CrossRef]

Appl. Phys. B (1)

J. Hebling, A. G. Stepanov, G. Almasi, B.Bartal, and J. Kuhl, �??Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Appl. Phys. Lett. (7)

A. G. Stepanov, J. Hebling, J. Kuhl, �??Efficient generation of subpicosecond terahertz radiation by phasematched optical rectification using ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

K. Kawase, H.Minamide, K. Imai, J. Shikata, H. Ito, �??Injection-seeded terahertz-wave parametric generator with wide tenability,�?? Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, �??Free-space radiation from electro-optic crystals,�?? Appl. Phys. Lett. 56, 506-508 (1990).
[CrossRef]

Z. G. Lu, P. Campbell, and X.-C. Zhang, �??Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,�?? Appl. Phys. Lett. 71, 593-595 (1997).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, �??Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,�?? Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, �??Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,�?? Appl. Phys. Lett. 64, 137-139 (1994).
[CrossRef]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, �??Terahertz pulse shaping via optical rectification in poled lithium niobate,�?? Appl. Phys. Lett. 82, 170 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Kleinman, D. H. Austom, �??Theory of Electrooptic Shock Radiation in Nonlinear Optical Media,�?? IEEE J. Quantum Electron. QE-20, 965-970 (1984).

S. �??G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, �??High-power narrow-band terahertz generation using large-aperture photoconductors,�?? IEEE J. Quantum Electron. 35, 1257-1267 (1999).
[CrossRef]

J. Chem. Phys. (1)

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, �??Heterodyned impulsive stimulated Raman scattering of phonon�??polaritons in LiTaO3 and LiNbO3,�?? J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

Nature (1)

B. E. Cole, J. B. Willams, B. T. King, M. S. Sherwin, C. R. Stanley, �??Coherent manipulation of semiconductor quantum bits with terahertz radiation,�?? Nature 410, 60-63 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

J. Hebling, �??Determination of the momentum of impulsively generated phonon polaritons,�?? Phys. Rev. B 65, 092301 (2002).
[CrossRef]

J. K. Wahlstrand and R. Merlin, �??Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,�?? Phys. Rev. B 68, 054301 (2003).
[CrossRef]

P. C. M. Planken, L. D. Noordam, J. T. M. Kennis, and A. Lagendijk, �??Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3,�?? Phys. Rev. B 45, 7106-7114 (1992).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, �??Frequency and temperature dependence of the TO phononpolariton decay in GaP,�?? Phys. Rev. B 63, 104304 (2001).
[CrossRef]

Phys. Rev. E (1)

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and A. M. Sergeev, �??Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma,�?? Phys. Rev. E 70 016401 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida, and T. Katsouleas, �??Experimental observation of radiation from Cherenkov wakes in a magnetized plasma,�?? Phys. Rev. Lett. 89, 065003 (2002).
[CrossRef] [PubMed]

T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, �??Infrared-Phonon-Polariton Resonance of the Nonlinear Susceptibility in GaAs,�?? Phys. Rev. Lett. 90, 055508 (2003).
[CrossRef] [PubMed]

G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. van der Meer, �??Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses,�?? Phys. Rev. Lett. 83, 1578 (1999).
[CrossRef]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, �??Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,�?? Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

F. Vallée and Ch. Flytzanis, �??Picosecond Phonon-Polariton Pulse Transmission through an Interface,�?? Phys. Rev. Lett. 74, 3281�??3284 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

H. J. Bakker, S. Hunsche, and H. Kurz, �??Coherent phonon polaritons as probes of anharmonic phonons in ferroelectrics,�?? Rev. Mod. Phys. 70, 523-536 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Sov. Phys. JETP (1)

G. A. A�??skaryan, �??Cherenkov radiation and transition radiation from electromagnetic waves,�?? Sov. Phys. JETP 37, 594-596 (1962).

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transient grating THz generation by two-beam excitation.

Fig. 2.
Fig. 2.

Experimental set-up.

Fig. 3.
Fig. 3.

Left panel: THz waveforms measured for 3 different angles (0.350 (a), 1.30 (b), and 1.90 (c)) between the two excitation beams. Middle panel: normalized power spectra calculated by fast Fourier transformation of the time domain data. Right panel: THz frequency versus the angle between the two pump laser beams.

Fig. 4.
Fig. 4.

Frequency dependence of the (a) measured and (b) predicted energy of the generated THz pulses.

Fig. 5.
Fig. 5.

Illustration of simple THz waveform shaping.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t THz = k · D · sin γ v THz ,

Metrics