Abstract

Input and output boundaries of a photonic crystal (PC) are optimized so that the superprism exhibits low insertion loss. It is shown that projected-airhole and half-circular airhole interfaces achieve transmission loss of 0.3 dB and 1.0 dB, respectively, for small and large incident angles of light against normal to boundaries. The finite-difference time-domain simulation shows that a low loss is essentially realized by a periodic phase modulation of the incident beam by the interfaces. It also demonstrates the clear steering of collimated light beam with varying wavelength. The enhancement of angular dispersion is also demonstrated by a PC composed of a dispersive medium.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals: toward microscale lightwave circuits,�?? J. Lightwave Technol. 17, 2032-2034 (1999).
    [CrossRef]
  2. T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  3. L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, �??Superprism phenomena in planar photonic crystals,�?? IEEE J. Quantum Electron. 38, 915-918 (2002).
    [CrossRef]
  4. K. B. Chung, and S. W. Hong, �??Wavelength demultiplexers based on the superprism phenomena in photonic crystals,�?? Appl. Phys. Lett. 81, 1549-1551 (2002).
    [CrossRef]
  5. T. Prasad, V. Colvin, and D. Mittleman, �??Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,�?? Phys. Rev. B 67, 165103-165109 (2003)
    [CrossRef]
  6. D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, �??Electro-optic control of the superprism effect in photonic crystals,�?? Appl. Phys. Lett. 82, 3176-3178 (2003).
    [CrossRef]
  7. T. Baba and T. Matsumoto, �??Resolution of photonic crystal superprism,�?? Appl. Phys. Lett. 81, 2325-2327 (2002).
    [CrossRef]
  8. T. Matsumoto and T. Baba, �??Photonic crystal k-vector superprism,�?? J. Lightwave Technol. 22, 917-922 (2004).
    [CrossRef]
  9. T. Matsumoto and T. Baba, �??Design and FDTD simulation of photonic crystal k-vector superprism,�?? IEICE Trans. Electron. E87-C, 393-397 (2004).
  10. T. Baba and D. Ohsaki, �??Interfaces of photonic crystals for high efficiency light transmission,�?? Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
    [CrossRef]
  11. J. Ushida, M. Tokushima, M. Shirane, A. Gomyo, and H. Yamada, �??Immittance matching for multidimensional open-system photonic crystals,�?? Phys. Rev. B 68, 155115-155121 (2003).
    [CrossRef]
  12. Y. Suematsu, Ed., Semiconductor Lasers and Integrated Optics, Ohmsha, Tokyo, (1984).

Appl. Phys. Lett.

K. B. Chung, and S. W. Hong, �??Wavelength demultiplexers based on the superprism phenomena in photonic crystals,�?? Appl. Phys. Lett. 81, 1549-1551 (2002).
[CrossRef]

D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, �??Electro-optic control of the superprism effect in photonic crystals,�?? Appl. Phys. Lett. 82, 3176-3178 (2003).
[CrossRef]

T. Baba and T. Matsumoto, �??Resolution of photonic crystal superprism,�?? Appl. Phys. Lett. 81, 2325-2327 (2002).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, �??Superprism phenomena in planar photonic crystals,�?? IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

IEICE Trans. Electron.

T. Matsumoto and T. Baba, �??Design and FDTD simulation of photonic crystal k-vector superprism,�?? IEICE Trans. Electron. E87-C, 393-397 (2004).

J. Lightwave Technol.

Jpn. J. Appl. Phys.

T. Baba and D. Ohsaki, �??Interfaces of photonic crystals for high efficiency light transmission,�?? Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

Phys. Rev. B

J. Ushida, M. Tokushima, M. Shirane, A. Gomyo, and H. Yamada, �??Immittance matching for multidimensional open-system photonic crystals,�?? Phys. Rev. B 68, 155115-155121 (2003).
[CrossRef]

T. Prasad, V. Colvin, and D. Mittleman, �??Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,�?? Phys. Rev. B 67, 165103-165109 (2003)
[CrossRef]

Other

Y. Suematsu, Ed., Semiconductor Lasers and Integrated Optics, Ohmsha, Tokyo, (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Contour plots of eigen frequency (thin black curve), incident angle (thick gray curve) and resolution parameter (thick black curve) of 2D PC in a triangular lattice rotated by 45°. (a) S -vector prism. Resolution parameter of > 30 is omitted. (b) k -vector prism with 45° output end. Black region indicates air lightcone when the structure is airbridge PC slab.

Fig. 2
Fig. 2

Light transmission characteristics of S -vector prism. (a) Light intensity distribution for PC without special interfaces. (b) That with projected airhole interfaces. (c) Dependence of insertion loss on angle of projections. (d) Dependence on normalized frequency a/λ.

Fig. 3
Fig. 3

Shaded drawings of field intensity distribution (H field in the direction perpendicular to the 2D plane) of light propagation at input interfaces of PCs. Dark lines denote the shape of airholes. (a) θpr = -20°. (b) θpr = 20°.

Fig. 4
Fig. 4

Beam steering characteristics of S -vector prism. (a) Light intensity distributions for various a/λ. (b) Beam steering angle as a function of a/λ. Solid and dashed lines denote background material of PC without and with material dispersion.

Fig. 5
Fig. 5

Beam steering characteristics of k -vector prism. (a) Calculation model and light intensity distributions for various a/λ. (b) Beam steering angle as a function of a/λ. Solid and dashed lines denote background material of PC without and with material dispersion.

Metrics