Abstract

A novel all-solid Bragg fiber composed entirely of silica material is proposed in this paper. The core of this Bragg fiber is composed of conventional silica, and the cladding is formed by a set of alternating layers of up-doped and down-doped silica. This all-solid silica Bragg fiber is technically feasible and can simplify the fabrication technique. Dispersion properties of this silica Bragg fiber are investigated, and simulations show that zero dispersion wavelength λ 0 near 1.55 μm with nonlinear coefficient γ about 50 W-1km-1 can be obtained in silica Bragg fiber.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
High-index-core Bragg fibers: dispersion properties

Juan A. Monsoriu, Enrique Silvestre, Albert Ferrando, Pedro Andrés, and Juan J. Miret
Opt. Express 11(12) 1400-1405 (2003)

Analysis of circular fibers with an arbitrary index profile by the Galerkin method

Shangping Guo, Feng Wu, Khalid Ikram, and Sacharia Albin
Opt. Lett. 29(1) 32-34 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [Crossref]
  2. S.D. Hartet al., “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510, (2002).
    [Crossref] [PubMed]
  3. T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1
  4. G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Opt. Express 10, 899–908 (2002).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899
    [Crossref] [PubMed]
  5. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andrés, and Juan J. Miret, “High-index-core Bragg fibers: dispersion properties,” Opt. Express 11, 1400–1405 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1400
    [Crossref] [PubMed]
  6. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
    [Crossref]
  7. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
    [Crossref]
  8. T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6
  9. P. Russell, “Photonic Crystal Fibers,” Science 299, 358, (2003).
    [Crossref] [PubMed]
  10. J. C. Knight, “Photonic Crystal Fibres,” Nature 424, 847, (2003)
    [Crossref] [PubMed]
  11. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2225
    [Crossref] [PubMed]

2004 (1)

T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1

2003 (5)

2002 (2)

2000 (1)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

1999 (1)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

1978 (1)

Andrés, P.

Bennett, P.J.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

Bjarklev, A.

T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6

Broderick, N.G.R.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

Broeng, J.

T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6

Feng, X.

Ferrando, A.

Finazzi, V.

Hansen, T.P.

T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6

T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6

Hart, S.D.

S.D. Hartet al., “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510, (2002).
[Crossref] [PubMed]

Hewak, D.

Katagiri, T.

T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1

Knight, J. C.

J. C. Knight, “Photonic Crystal Fibres,” Nature 424, 847, (2003)
[Crossref] [PubMed]

Marom, E.

Matsuura, Y.

T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1

Miret, Juan J.

Miyagi, M.

T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1

Monro, T. M.

Monro, T.M.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

Monsoriu, J. A.

Ouyang, G.

Petropoulos, P.

Richardson, D.J.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299, 358, (2003).
[Crossref] [PubMed]

Silvestre, E.

Xu, Y.

Yariv, A.

Yeh, R P.

J. Lightwave Technology (2)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technology 17, 1093–1102, Jun. 1999
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fiber”, J. Lightwave Technology 18, 50–56, Jan. 2000
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

J. C. Knight, “Photonic Crystal Fibres,” Nature 424, 847, (2003)
[Crossref] [PubMed]

Opt. Express (3)

Optical Fiber Communication Conference (2)

T.P. Hansen, J. Broeng, T.P. Hansen, and A. Bjarklev, “Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion,” Optical Fiber Communication Conference2003, FI6

T. Katagiri, Y. Matsuura, and M. Miyagi, “Fabrication of silica-core photonic bandgap fiber with multilayer cladding,” Optical Fiber Communication Conference2004, WI1

Science (2)

P. Russell, “Photonic Crystal Fibers,” Science 299, 358, (2003).
[Crossref] [PubMed]

S.D. Hartet al., “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510, (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of all-solid silica Bragg fiber (a) cross section (b) refractive index profile.

Fig. 2.
Fig. 2.

Modal field pattern of the fundamental mode (HE11) in all-solid silica Bragg fiber with nC=nS, r0 =0.5 μm, Λ = 1.6 μm and a = 0.8 μm. Units of axes are in μm and λ = 1.55 μm.

Fig. 3.
Fig. 3.

Effective indices (neff = β/k) for defect modes in all-solid silica Bragg fiber with a/Λ=0.50. The down-doped defect modes from top are for down-doping level of 0.5%, 1%, and 1.5%, respectively.

Fig. 4.
Fig. 4.

Dispersion of all-solid silica Bragg fiber with r0= 0.5 μm, Λ= 1.6μm and a/Λ=0.50 for different down-doped levels: 0.5% (black), 1% (red), and 1.5% (green).

Fig. 5.
Fig. 5.

Dispersion of all-solid silica Bragg fiber (a) Λ= 1.6μm with a/Λ=0.40 (black), a/Λ=0.50 (red), and a/Λ=0.60 (green), (b) a/Λ=0.50 with Λ= 1.2μm (black), Λ= 1.6μm (red), and Λ= 2μm (green).

Fig. 6.
Fig. 6.

Dispersion of high nonlinear all-solid silica Bragg fiber with λ 0 around 1.55 μm.

Metrics