Abstract

We report on a new method based on speckle size analysis and devoted to particle aggregation measurements. The experimental measurements give the speckle size variation during a salt aggregation process of polystyrene microspheres. The measurements are taken at a fixed monomer concentration, varying the salt concentration. Moreover, we applied this technique to follow blood platelet aggregation, usually monitored with a visible light transmittance photometer (aggregometer). Aggregation process was induced by ADP (adenosine diphosphate) addition, then we measured the speckle size variation versus time at two different ADP concentrations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
    [Crossref] [PubMed]
  2. M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
    [Crossref]
  3. Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
    [Crossref] [PubMed]
  4. D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
    [Crossref] [PubMed]
  5. D.A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
    [Crossref]
  6. J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984).
  7. P. Lehmann, “Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination,” Appl. Opt. 38, 1144–1152 (1999).
    [Crossref]
  8. G. Da Costa and J. Ferrari, “Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,” Appl. Opt. 36, 5231–5237 (1997).
    [Crossref] [PubMed]
  9. R. Berlasso, F. Perez Quintian, M.A. Rebollo, C.A. Raffo, and N.G. Gaggioli, “Study of speckle size of light scattered from cylindrical rough surfaces,” Appl. Opt. 39, 5811–5819 (2000).
    [Crossref]
  10. A. Sadhwani, K.T. Schomaker, G.J. Tearney, and N.S. Nishioka, “Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis,” Appl. Opt. 35, 5727–5735 (1996).
    [Crossref] [PubMed]
  11. Y. Ozaki, “Measurement of platelet aggregation and attempts for standardization,” Sysmex J. Int. 8, 15–22 (1998).
  12. P. Latimer, “Blood platelet aggrgometer: predicted effects of aggregation, photometer geometry, and multiple scattering,” Appl. Opt. 22, 1136–1143 (1983).
    [Crossref] [PubMed]
  13. Y. Piederriere, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lotrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12, 176–188 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-176
    [Crossref] [PubMed]
  14. H.C. Van de Hulst, Light scattering by small particles (New York, Dover, 1981).
  15. Terri L. Alexander, James E. Harvey, and Arthur R. Weeks, “Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory,” Appl. Opt. 33, 8240–8250 (1994).
    [Crossref] [PubMed]

2004 (1)

2000 (1)

1999 (1)

1998 (2)

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Y. Ozaki, “Measurement of platelet aggregation and attempts for standardization,” Sysmex J. Int. 8, 15–22 (1998).

1997 (2)

1996 (1)

1994 (1)

1990 (1)

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

1989 (2)

J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
[Crossref] [PubMed]

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

1983 (1)

Alexander, Terri L.

Berlasso, R.

Boas, D.A.

Cariou, J.

Carpinetti, M.

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Da Costa, G.

Ferrari, J.

Ferri, F.

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Gaggioli, N.G.

Georgalis, Y.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Giglio, M.

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Goodman, J.W.

J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984).

Guern, Y.

Harvey, James E.

Hollenbach, B.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Latimer, P.

Le Brun, G.

Le Jeune, B.

Lehmann, P.

Lehrach, H.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Lotrian, J.

Lurz, R.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Majolino, D.

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

Mallamace, F.

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

Martin, J.E.

J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
[Crossref] [PubMed]

Micali, N.

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

Migliardo, P.

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

Nishioka, N.S.

Ozaki, Y.

Y. Ozaki, “Measurement of platelet aggregation and attempts for standardization,” Sysmex J. Int. 8, 15–22 (1998).

Paganini, E.

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Perez Quintian, F.

Perini, U.

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Piederriere, Y.

Raffo, C.A.

Rebollo, M.A.

Sadhwani, A.

Scherzinger, Eberhard

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Schomaker, K.T.

Sger, W.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Shaefer, D.W.

J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
[Crossref] [PubMed]

Starikov, E.B.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Tearney, G.J.

Van de Hulst, H.C.

H.C. Van de Hulst, Light scattering by small particles (New York, Dover, 1981).

Vasi, C.

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

Wanker, E.

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Weeks, Arthur R.

Wilcoxon, J.P.

J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
[Crossref] [PubMed]

Yodh, A. G.

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Phys. Rev. A (3)

D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, “Elastic and quasielastic light-scattering studies of the aggregation phenomena in water solutions of polystyrene particles,” Phys. Rev. A 40, 4665–4674 (1989).
[Crossref] [PubMed]

J.P. Wilcoxon, J.E. Martin, and D.W. Shaefer, “Aggregation in colloidal gold,” Phys. Rev. A 39, 2675–2688 (1989).
[Crossref] [PubMed]

M. Carpinetti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, “Salt-induced fast aggregation of polystyrene latex,” Phys. Rev. A 42, 7347–7354 (1990).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. Georgalis, E.B. Starikov, B. Hollenbach, R. Lurz, Eberhard Scherzinger, W. Sger, H. Lehrach, and E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. 95, 6118–6121 (1998).
[Crossref] [PubMed]

Sysmex J. Int. (1)

Y. Ozaki, “Measurement of platelet aggregation and attempts for standardization,” Sysmex J. Int. 8, 15–22 (1998).

Other (2)

J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984).

H.C. Van de Hulst, Light scattering by small particles (New York, Dover, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental set-up (top view).

Fig.2.
Fig.2.

dy versus t during aggregation process at several salt concentrations with the respective linear fitting curves:

Fig.3.
Fig.3.

dy versus the time t during platelet aggregation process obtained for two ADP concentration

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R I ( Δ x , Δ y ) = I x 1 y 1 I x 2 y 2
R I ( Δ x , Δ y ) = R I x y
c I x y = R I x y I x y 2 I x y 2 I x y 2
PS D I υ x υ y = FT [ I x y ] 2
c I x y = F T 1 [ FT [ I x y ] 2 ] I x y 2 I x y 2 I x y 2

Metrics