Abstract

Homogeneous line broadening suppression and supermode noise reduction in a multiwavelength actively mode-locked erbium-doped fiber ring laser are investigated. By incorporating a semiconductor optical amplifier that is biased to operate just above the transparent point, the gain spectral hole burning of the erbium-doped fiber ring laser is effectively suppressed and the supermode noise is significantly reduced. Active mode locking of 8 wavelengths at room temperature with improved noise figure is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 10, 1712-1714 (1998).
    [CrossRef]
  2. J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, �??Active mode locking of tunable multi-wavelength fiber ring laser,�?? Opt. Commun. 191, 341-345 (2001).
    [CrossRef]
  3. R. Hayashi, S. Yamashita, and T. Saida, �??Multiwavelength, actively mode-locked polarization maintaining fiber laser at 10 GHz,�?? in Technical Digest of Optical Fiber Communication Conference and Exhibit, OFC 2003, TuL6, pp. 239-240.
  4. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, �??Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,�?? IEEE/OSA J. Lightwave Technol. 18, 825-831 (2000).
    [CrossRef]
  5. K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, �??Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,�?? Opt. Lett. 28, 893-895 (2003).
    [CrossRef] [PubMed]
  6. J. S. Wey, J. Goldhar, and G. L. Burdge, �??Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,�?? IEEE/OSA J. Lightwave Technol. 15, 1171-1180 (1997).
    [CrossRef]
  7. Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, �??Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,�?? IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
    [CrossRef]
  8. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10 x 30 GHz pulse train generation from semiconductor amplifier fiber ring laser�??, IEEE Photon. Technol. Lett. 12, 25-27 (2000).
    [CrossRef]
  9. M. Mielke, G. A. Alphonse, and P. J. Delfyett, �??168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,�?? IEEE Photon. Technol. Lett. 15, 501-503 (2003).
    [CrossRef]
  10. E. Desurvire, J. L. Zyskind, and J. R. Simpson, �??Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers,�?? IEEE Photon. Technol. Lett. 2, pp. 246-248 (1990).
    [CrossRef]
  11. C. Peng, M. Yao, Q. Xu, and H. Zhang, �??Suppression of supermode competitions in SOA fiber mode-locked ring laser,�?? in proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2002, Vol. 2, pp. 377-378

IEEE Photon. Technol. Lett.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 10, 1712-1714 (1998).
[CrossRef]

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, �??Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,�?? IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10 x 30 GHz pulse train generation from semiconductor amplifier fiber ring laser�??, IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

M. Mielke, G. A. Alphonse, and P. J. Delfyett, �??168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,�?? IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, �??Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers,�?? IEEE Photon. Technol. Lett. 2, pp. 246-248 (1990).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, �??Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,�?? IEEE/OSA J. Lightwave Technol. 18, 825-831 (2000).
[CrossRef]

J. S. Wey, J. Goldhar, and G. L. Burdge, �??Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,�?? IEEE/OSA J. Lightwave Technol. 15, 1171-1180 (1997).
[CrossRef]

LEOS 2002

C. Peng, M. Yao, Q. Xu, and H. Zhang, �??Suppression of supermode competitions in SOA fiber mode-locked ring laser,�?? in proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2002, Vol. 2, pp. 377-378

OFC 2003

R. Hayashi, S. Yamashita, and T. Saida, �??Multiwavelength, actively mode-locked polarization maintaining fiber laser at 10 GHz,�?? in Technical Digest of Optical Fiber Communication Conference and Exhibit, OFC 2003, TuL6, pp. 239-240.

Opt. Commun.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, �??Active mode locking of tunable multi-wavelength fiber ring laser,�?? Opt. Commun. 191, 341-345 (2001).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spectral hole burning of the EDF. (a) Output spectrum of the EDF. (b) Output spectrum of the EDF with an SOA biased at 130 mA.

Fig. 2.
Fig. 2.

Schematic diagram of the multiwavelength actively mode locked erbium-doped fiber ring laser. WDM: 980-nm pump coupler, IM: intensity modulator, OC: optical coupler, OI: optical isolator, PC: polarization controller, SG: signal generator, OSCI: oscilloscope, OSA: optical spectrum analyzer, LD: laser diode, PD: photodetector.

Fig. 3.
Fig. 3.

Optical spectrum of the multiwavelength actively mode-locked fiber ring laser. (a) With SOA. (b) Without SOA.

Fig. 4.
Fig. 4.

Pulse intensity of the multiwavelength fiber laser locked at 820.024 MHz.

Fig. 5.
Fig. 5.

Intensity fluctuations of the multiwavelength actively mode locked fiber ring laser. (a) Without SOA. (b) With SOA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ h ( ν ) = ( Δν 2 π ) [ ( ν ν 0 ) 2 + ( Δν 2 ) 2 ] 1 ,
g m ( ν ) = A 21 c 2 8 πn r 2 ν 2 l ( ν ) ( N 2 N 1 ) ,
Γ h Δ λ h 1 + 1 + P s P sat ,
R = [ 1 ( 1 e g ) × e g P ave E s × 1 τ c + e g P ave E s ( 1 τ c + e g P ave E s ) 2 + 4 π 2 Δν 2 ] 2 + [ ( 1 e g ) × e g P ave E s × 2 πΔν ( 1 τ c + e g P ave E s ) 2 + 4 π 2 Δν 2 ] 2 ,

Metrics