Abstract

We demonstrate passive mode-locking of a microstructured fiber laser for the first time. The Nd-doped microstructured fiber exhibits a reduced dispersion at 1060 nm. A semiconductor saturable absorber mirror is used for passive mode-locking. Stable pulse formation with a pulse duration of about 26 ps and a pulse energy of 0.7 nJ is observed.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive harmonic hybrid mode-locked fiber laser with extremely broad spectrum

Xing Li, Weiwen Zou, and Jianping Chen
Opt. Express 23(16) 21424-21433 (2015)

SESAM mode-locked Tm:CALGO laser at 2 µm

Yicheng Wang, Guoqiang Xie, Xiaodong Xu, Juqing Di, Zhipeng Qin, Soile Suomalainen, Mircea Guina, Antti Härkönen, Antonio Agnesi, Uwe Griebner, Xavier Mateos, Pavel Loiko, and Valentin Petrov
Opt. Mater. Express 6(1) 131-136 (2016)

Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier

Peter Klopp, Uwe Griebner, Martin Zorn, Andreas Klehr, Armin Liero, Markus Weyers, and Götz Erbert
Opt. Express 17(13) 10820-10834 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
    [Crossref] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–7 (2000).
    [Crossref]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–4 (1998).
    [Crossref]
  4. L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–51 (2003).
    [Crossref]
  5. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
    [Crossref]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).
  7. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
    [Crossref]
  8. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 12, 1313–9 (2004).
    [Crossref] [PubMed]
  9. H. Lim, F. O. Ilday, and F. W. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12, 2231–5 (2004).
    [Crossref] [PubMed]
  10. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,” Opt. Express 11, 265–9 (2003).
    [Crossref] [PubMed]
  11. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–8 (2003).
    [Crossref] [PubMed]
  12. M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.
  13. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave assive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  14. H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331–3 (1991).
    [Crossref] [PubMed]
  15. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16, 235–7 (1991).
    [Crossref] [PubMed]
  16. J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J. Opt. Soc. Am. B 15, 216–22 (1998).
    [Crossref]

2004 (3)

2003 (4)

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,” Opt. Express 11, 265–9 (2003).
[Crossref] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–8 (2003).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–51 (2003).
[Crossref]

2001 (1)

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

1991 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).

Avdokhin, A. V.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Birks, T. A.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
[Crossref]

Brabec, T.

Broeng, J.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
[Crossref]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Furusawa, K.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

Glas, P.

M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.

Haus, H. A.

Hönninger, C.

Huang, W. P.

Ilday, F. O.

Iliew, R.

M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.

Ippen, E. P.

Jakobsen, C.

Jian, S. S.

Keller, U.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Krausz, F.

Liem, A.

Lim, H.

Limpert, J.

Moenster, M.

M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.

Mogilevtsev, D.

Monro, T. M.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

Morier-Genoud, F.

Moser, M.

Nolte, S.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Paschotta, R.

Peatross, J.

Petersson, A.

Petropoulos, P.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
[Crossref]

Popov, S. V.

Ranka, J. K.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Reich, M.

Richardson, D. J.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

Rundquist, A.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–4 (1998).
[Crossref]

Schreiber, T.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
[Crossref]

Shen, L. P.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Spielmann, C.

Steinmeyer, G.

M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.

Stentz, A. J.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Taylor, J. R.

Tünnermann, A.

Windeler, R. S.

Wise, F. W.

Zellmer, H.

Electron. Lett. (1)

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–1 (2001).
[Crossref]

IEEE Phot. Technol. Lett. (1)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Phot. Technol. Lett. 16, 1065–7 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–8 (2003).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Other (2)

M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, “Mode-locked Nd-doped microstructure fiber laser,” CLEO 2004, Technical Digest, CThX4.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Set-up of the mode-locked Nd:MSF laser. The solid beam represents the laser signal whereas the red outlined beam indicates the pump signal. M1, dichroic mirror (butt-coupled); M2, output coupler, ports A and B; L1, L2, L3 focusing lenses. The inset shows an scanning-electron micrograph of the Nd:MSF cross-section. d air hole diameter, Λ pitch.

Fig. 2.
Fig. 2.

Calculated group velocity dispersion vs. wavelength. At the lasing wavelength, which is represented by the dashed line, the MSF still operates in the normal GVD regime. The calculation was carried out based on the measured MSF geometry (cf. inset in Fig. 1).

Fig. 3.
Fig. 3.

Radio frequency spectrum of the first intermode beatnote at f R = 56 MHz. Resolution bandwidth is 1 kHz. The linewidth of the beatnote is ≤ 500Hz (FWHM) at the resolution limit. The modulation sidebands at ± 1 MHz are ≥ 38 dB below the carrier.

Fig. 4.
Fig. 4.

Intensity autocorrelation function of the mode-locked pulse train with a duration of 30ps (FWHM). The inset shows the decorrelated intensity profile of the pulse [16]. The reconstructed pulse width is 26ps (FWHM).

Fig. 5.
Fig. 5.

Mode-locked spectrum measured at a resolution of 0.2 nm. The center wavelength is ~ 1060 nm. The spectral width is ~ 7 nm (FWHM).

Metrics