Abstract

A two-wavelength laser-induced fluorescence technique is described for detecting and classifying biological aerosols. Single aerosols, smaller than 10 μm, are interrogated with 266 nm and 355 nm laser pulses separated in time by 400 ns. Fluorescence signals excited by these pulses are detected in three broad spectral bands centered at 350 nm, 450 nm and 550 nm. The results indicate that bacterial spores, vegetative bacterial cells and proteins can be differentiated based on the two wavelength excitation approach. Estimates of the fluorescence cross sections for 16 bioaerosol simulants and interferents are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. TSI Inc., 500 Cardigan Rd., Shoreview, MN, 55126-3996 <a href="http://www.tsi.com">http://www.tsi.com</a>
  2. J. Ho, �??Future of biological aerosol detectio n,�?? Analytica Chimica Acta 457, 125-148 (2002).
    [CrossRef]
  3. V. Agranovski, Z. Ristovski, M. Hargreaves, P.J. Blackall and L. Morawska, �??Real-time measurement of bacterial aerosols with the UVAPS: Performance evaluation,�?? J. Aerosol Science 34, 301-317 (2003).
    [CrossRef]
  4. C. A. Prim merman, �??Detection of biological agents,�?? Lincoln Laboratory Journal 12, 3-32 (2000).
  5. J.D. Eversole, W.K. Cary Jr., C.S. Scotto, R. Pierson, M. Spence and A.J. Campillo, Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,�?? Field Analytical Chemistry and Technology 15, 205-212 (2001).
    [CrossRef]
  6. J.D. Eversole, J.J. Hardgrove, W.K. Cary Jr., D.P. Choulas and M. Seaver, �??Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,�?? Field Analytical Chemistry and Technology 3, 249-259 (1999).
    [CrossRef]
  7. C.R. Cantor and P.R. Schimmel, Biophysical Chemistry (W.H. Freeman, San Francisco, 1980) pp380, 443.
  8. S.V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids (Plenum, New York, 1967) P. 10.
  9. T.D. Brock, M.T. Madigan, J.M. Martinko and J. Parker, Biology of Microorganisms, 7th ed. (Prentice Hall, Englewood Cliffs, NJ, 1994) Chap. 19.
  10. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, Jr., D. J. Rader, T. J. O�??Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young and R. J. Radloff, �??Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,�?? Aerosol Science and Technology 30, 186-201 (1999).
    [CrossRef]
  11. Duke Scientific Corporation. <a href="http://www.dukescientific.com">http://www.dukescientific.com</a>
  12. Gel-Tech (Now called Lightpath Technologies, no longer manufactures the sol-gel spheres)
  13. Samples provided by AFIP were noted to include growth media.
  14. G. W. Faris, R. A. Copeland, K. Mortelmans and B. V. Bronk, �??Spect rally resolved absolute fluorescence cross sections for bacillus spores,�?? Appl. Opt. 36, 958-967 (1997).
    [CrossRef] [PubMed]
  15. M. Seaver, D.C. Roselle, J. Pinto and J. Eversole, �??Absolute emission spectra from Bacillus subtillis and Escherichia coli vegetatative cells in solution,�?? Appl. Opt. 37, 5344-5347 (1998).
    [CrossRef]

Aerosol Science and Technology

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, Jr., D. J. Rader, T. J. O�??Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young and R. J. Radloff, �??Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,�?? Aerosol Science and Technology 30, 186-201 (1999).
[CrossRef]

Analytica Chimica Acta

J. Ho, �??Future of biological aerosol detectio n,�?? Analytica Chimica Acta 457, 125-148 (2002).
[CrossRef]

Appl. Opt.

Field Analytical Chemistry and Technolog

J.D. Eversole, W.K. Cary Jr., C.S. Scotto, R. Pierson, M. Spence and A.J. Campillo, Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,�?? Field Analytical Chemistry and Technology 15, 205-212 (2001).
[CrossRef]

J.D. Eversole, J.J. Hardgrove, W.K. Cary Jr., D.P. Choulas and M. Seaver, �??Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,�?? Field Analytical Chemistry and Technology 3, 249-259 (1999).
[CrossRef]

J. Aerosol Science

V. Agranovski, Z. Ristovski, M. Hargreaves, P.J. Blackall and L. Morawska, �??Real-time measurement of bacterial aerosols with the UVAPS: Performance evaluation,�?? J. Aerosol Science 34, 301-317 (2003).
[CrossRef]

Lincoln Laboratory Journal

C. A. Prim merman, �??Detection of biological agents,�?? Lincoln Laboratory Journal 12, 3-32 (2000).

Other

TSI Inc., 500 Cardigan Rd., Shoreview, MN, 55126-3996 <a href="http://www.tsi.com">http://www.tsi.com</a>

C.R. Cantor and P.R. Schimmel, Biophysical Chemistry (W.H. Freeman, San Francisco, 1980) pp380, 443.

S.V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids (Plenum, New York, 1967) P. 10.

T.D. Brock, M.T. Madigan, J.M. Martinko and J. Parker, Biology of Microorganisms, 7th ed. (Prentice Hall, Englewood Cliffs, NJ, 1994) Chap. 19.

Duke Scientific Corporation. <a href="http://www.dukescientific.com">http://www.dukescientific.com</a>

Gel-Tech (Now called Lightpath Technologies, no longer manufactures the sol-gel spheres)

Samples provided by AFIP were noted to include growth media.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental apparatus used for multiwavelength fluorescence excitation of bioaerosol particles. AC: aerosol chamber; Nd:YAG 1: laser 1, 5 nsec pulses at 1064 nm and 532 nm; THG: third harmonic generator output at 355 nm; Nd:YAG 2: laser 2, 20 nsec pulses at 1064 nm and 532 nm, FHG: fourth harmonic generator output at 266 nm; BS1 beam splitter, 8% reflection at 355nm; BS2: 8% reflection at 266nm; PD1: 355 nm power monitor photodiode; PD2: 266 nm power monitor photodiode; DCM1: dichroic beam splitter reflects 350 nm; DCM2 dichroic beam splitter reflects 450 nm; DCM3: dichroic beam splitter reflects 810 nm.

Fig. 2.
Fig. 2.

Plots of the elastic scattered light and fluorescence intensity as a function of particle size for un -doped polystyrene spheres showing a cross-sectional area dependence on particle size.

Fig. 3.
Fig. 3.

Aerosol scattering and fluorescence data summary for the 16 samples listed in Table 1. The bars represent the average value obtained from 500 sequential records. There are six signals recorded for each part icle: (a) scattered light intensity in arbitrary units; (b) 266 nm-excited 350 nm fluorescence signal; (c) 266 nm-excited 450 nm fluorescence signal; (d) 266 nm-excited 550 nm fluorescence signal; (e) 355 nm-excited 450 nm fluorescence signal; (f) 355 nm-excited 550 nm fluorescence signal. The fluorescence signal intensities are given in terms of the number of detected photons.

Fig. 4.
Fig. 4.

Scatter plot distribution of the 355 nm-excited fluorescence versus the 266 nm-excited fluorescence for the 16 samples listed in Table 1. The ovals represent the probability that a particle of the indicated type will fall within that range.

Tables (2)

Tables Icon

Table 1. List of the simulants and interferents investigated

Tables Icon

Table 2. Aerosol samples investigated and estimated fluorescence cross-sections for 266 nm and 355 nm excitation wavelengths in units of cm2/particle

Metrics