Abstract

By using an optical nonreturn-to-zero (NRZ) format data-stream to injection-lock an synchronously modulated Fabry-Perot laser diode at below threshold condition (without DC driving current), an output data-stream with pseudo-return-to-zero (PRZ) format can be generated at bit rate of up to 2.488 Gbit/s. Such an NRZ-to-PRZ format transformation is due to the injection-locking induced gain-switching of the FPLD with the incoming NRZ data. The PRZ data-stream with a maximum on/off extinction ratio of 12.2 dB is obtained under the optical injecting power of -2 dBm and the RF driving power of 24.4 dBm. The best side-mode suppression ratio of 40 dB and the lowest timing jitter of 0.4 ps for the PRZ data-stream are observed. A power penalty of 1.2 dB is measured at a bit-error rate of 10-9 after NRZ-to-PRZ transformation. In application, the demonstration of an all-optical OR logic gate using the FPLD-based NRZ-to-PRZ transformer is also reported.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Medina, �??Photons vs. electrons [all optical network],�?? IEEE Potentials 21, 9-11 (2002).
    [CrossRef]
  2. L. Chusseau, E. Hemery, and J. M. Lourtioz, �??Period doubling in directly modulated InGaAsP semiconductor lasers,�?? Appl. Phys. Lett. 55, 822-824 (1989).
    [CrossRef]
  3. Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, and A. Suzuki, �??Bifurcation in 20-GHz gain-switched 1.55-μm MQW lasers and its control by CW injection seeding,�?? IEEE J. Quantum Electron. 34, 1213-1223 (1998).
    [CrossRef]
  4. H. Yoo, Y. D. Jeong, Y. H. Won, M. Kang, and H. J. Lee, �??All-optical wavelength conversion using absorption modulation of an injection-locked Fabry-Perot laser diode,�?? IEEE Photon. Technol. Lett. 16, 536-538 (2004).
    [CrossRef]
  5. Y. D. Jeong, H. J. Lee, H. Yoo, and Y. H. Won, �??All-optical NRZ-to-PRZ converter at 10 Gb/s based on selfphase modulation of Fabry-Perot laser diode,�?? IEEE Photon. Technol. Lett. 16, 1179-1181 (2004).
    [CrossRef]
  6. J. Mørk, B. Tromborg, and P. L. Christiansen, �??Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,�?? IEEE J. Quantum Electron. QE-24, 123-133 (1988).
    [CrossRef]
  7. L. Li, �??A unified description of semiconductor lasers with external light injection and its application to optical bistability,�?? IEEE J. Quantum Electron. QE-30, 1723-1731 (1994).
  8. S. Sivaprakasam, and Ranjit Singh, �??Gain change and threshold reduction of diode laser by injection locking,�?? Opt. Commun. 151, 253-256 (1998).
    [CrossRef]
  9. A. E. Siegman, Lasers (Oxford University Press, London, UK, 1986).
  10. J. Horer and E. Patzak, �??Large-signal analysis of all-optical wavelength conversion using two-mode injectionlocking in semiconductor lasers,�?? IEEE Quantum Electron. 33, 596-608 (1997).
    [CrossRef]
  11. ITU-T Recommendation G.957, �??Optical Interfaces For Equipments and Systems Relating to the Synchronous Digital Hierarchy�?? (Telecommunication Standardization Sector of International Telecommunication Union, 1999), <a href="http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-G.957-199907-I">http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-G.957-199907-I</a>

Appl. Phys. Lett. (1)

L. Chusseau, E. Hemery, and J. M. Lourtioz, �??Period doubling in directly modulated InGaAsP semiconductor lasers,�?? Appl. Phys. Lett. 55, 822-824 (1989).
[CrossRef]

IEEE J. Quantum Electron. (3)

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, and A. Suzuki, �??Bifurcation in 20-GHz gain-switched 1.55-μm MQW lasers and its control by CW injection seeding,�?? IEEE J. Quantum Electron. 34, 1213-1223 (1998).
[CrossRef]

J. Mørk, B. Tromborg, and P. L. Christiansen, �??Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,�?? IEEE J. Quantum Electron. QE-24, 123-133 (1988).
[CrossRef]

L. Li, �??A unified description of semiconductor lasers with external light injection and its application to optical bistability,�?? IEEE J. Quantum Electron. QE-30, 1723-1731 (1994).

IEEE Photon. Technol. Lett. (2)

H. Yoo, Y. D. Jeong, Y. H. Won, M. Kang, and H. J. Lee, �??All-optical wavelength conversion using absorption modulation of an injection-locked Fabry-Perot laser diode,�?? IEEE Photon. Technol. Lett. 16, 536-538 (2004).
[CrossRef]

Y. D. Jeong, H. J. Lee, H. Yoo, and Y. H. Won, �??All-optical NRZ-to-PRZ converter at 10 Gb/s based on selfphase modulation of Fabry-Perot laser diode,�?? IEEE Photon. Technol. Lett. 16, 1179-1181 (2004).
[CrossRef]

IEEE Potentials (1)

R. Medina, �??Photons vs. electrons [all optical network],�?? IEEE Potentials 21, 9-11 (2002).
[CrossRef]

IEEE Quantum Electron. (1)

J. Horer and E. Patzak, �??Large-signal analysis of all-optical wavelength conversion using two-mode injectionlocking in semiconductor lasers,�?? IEEE Quantum Electron. 33, 596-608 (1997).
[CrossRef]

Opt. Commun. (1)

S. Sivaprakasam, and Ranjit Singh, �??Gain change and threshold reduction of diode laser by injection locking,�?? Opt. Commun. 151, 253-256 (1998).
[CrossRef]

Other (2)

A. E. Siegman, Lasers (Oxford University Press, London, UK, 1986).

ITU-T Recommendation G.957, �??Optical Interfaces For Equipments and Systems Relating to the Synchronous Digital Hierarchy�?? (Telecommunication Standardization Sector of International Telecommunication Union, 1999), <a href="http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-G.957-199907-I">http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-G.957-199907-I</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Experimental setup for the NRZ-to-PRZ format transformer: AMP: power amplifier; EDFA: Erbium-doped fiber amplifier; FPLD: Fabry-Perot laser diode; MZM: Mach-Zehnder modulator; OC: optical coupler; PC: polarization controller; PG: pattern generator; SW: optical switch; TL: tunable laser.

Fig. 2.
Fig. 2.

(a) The ‘general’ gain-switching method; (b) The ‘anomalous’ gain-switching method: (A) without external injection; (B) with external injection.

Fig. 3.
Fig. 3.

The pulse intensity with and without light injection.

Fig. 4.
Fig. 4.

ER versus external injection power under different RF driving power of the NRZ-to-PRZ transformer.

Fig. 5.
Fig. 5.

The peak power and the SMSR at different injecting powers.

Fig. 6.
Fig. 6.

The SSB phase noise and the associated rms timing jitter. The integral range is 10 Hz–5 kHz.

Fig. 7.
Fig. 7.

RMS timing jitter and pulsewidth versus external injection power.

Fig. 8.
Fig. 8.

The patterns: (a) the electrical NRZ data before the MZM; (b) the PG-encoded optical NRZ data; (c) the transformed PRZ signal generated from the single-mode FPLD. The data rate is 2.488 Gbit/s.

Fig. 9.
Fig. 9.

The corresponding eye diagrams: (a) the electrical NRZ data before the MZM; (b) the PG-encoded optical NRZ data; (c) the transformed PRZ data. The data rate is 2.488 Gbit/s.

Fig. 10.
Fig. 10.

The BER performance at 2.488 Gbit/s.

Fig. 11.
Fig. 11.

The BER versus the external injection power.

Fig. 12.
Fig. 12.

An all-optical logical OR gate by using the NRZ-to-PRZ format transformer.

Fig. 13.
Fig. 13.

Illustration of the test data (Ch1 and Ch2) and the data (Output) after OR operation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I th = e N th V τ s = eV [ G ( N th ) G N + N 0 ] τ s
G N = g N υ g τ ph
I th = I th eV τ ph G N τ s [ R sp S Lm + 4 α 2 k c 2 S i ( 1 + α 2 ) S Lm ]

Metrics