Abstract

We demonstrate a new scheme for the efficient suppression of Brillouin scattering of a single-frequency laser source in a 72 m-long Neodymium-doped fiber amplifier by simultaneous amplification of two seed lasers separated in wavelength by two times the Brillouin-shift. This scheme can be independently employed in addition to conventional methods of suppressing stimulated Brillouin scattering enabling further power scaling of existing systems.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical analysis of single-frequency Raman fiber amplifier system operating at 1178nm

Christopher Vergien, Iyad Dajani, and Clint Zeringue
Opt. Express 18(25) 26214-26228 (2010)

Brillouin scattering spectra in high-power singlefrequency ytterbium doped fiber amplifiers

Matthias Hildebrandt, Sebastian Büsche, Peter Weßels, Maik Frede, and Dietmar Kracht
Opt. Express 16(20) 15970-15979 (2008)

Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers

V. I. Kovalev and R. G. Harrison
Opt. Lett. 31(2) 161-163 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, “Stimulated Brillouin Scattering in Monomode Optical Fiber,” J. Opt. Commun. 4, 10–19 (1983).
  2. Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
    [Crossref]
  3. M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
    [Crossref]
  4. N.A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 19, 2551–2557 (2002).
    [Crossref]
  5. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, “All-solid-state neodymium-based single-frequency master-oscillator fiber power amplifier system emitting 5.5 W of radiation at 1064 nm,” Opt. Lett. 24, 469–471 (1999).
    [Crossref]
  6. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, “100-W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28,1537–1539 (2003).
    [Crossref] [PubMed]
  7. K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
    [Crossref]
  8. H. Lee and G.P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3467.
    [Crossref] [PubMed]
  9. E. Lichtmann, A.A. Friesem, R.G. Waarts, and H.H. Yaffe, “Stimulated Brillouin scattering excited by two pump waves in single-mode fibers,” J. Opt. Soc. Am. B 4, 1397–1403 (1987).
    [Crossref]
  10. M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
    [Crossref]
  11. D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).
    [Crossref]
  12. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego,2001).

2003 (2)

2002 (1)

1999 (1)

1997 (1)

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
[Crossref]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

1987 (1)

1986 (1)

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

1983 (1)

D. Cotter, “Stimulated Brillouin Scattering in Monomode Optical Fiber,” J. Opt. Commun. 4, 10–19 (1983).

1982 (1)

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).
[Crossref]

Agrawal, G.P.

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Brilliant, N.A.

Chraplyvy, A.R.

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

Cotter, D.

D. Cotter, “Stimulated Brillouin Scattering in Monomode Optical Fiber,” J. Opt. Commun. 4, 10–19 (1983).

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).
[Crossref]

Fallnich, C.

Friesem, A.A.

Horowitz, M.

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

Lee, H.

Lichtmann, E.

Liem, A.

Limpert, J.

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Nakashima, T.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
[Crossref]

Plamann, K.

Seikai, S.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

Shibata, N.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
[Crossref]

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
[Crossref]

Tkach, R.W.

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

Tsubokawa, M.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

Tünnermann, A.

Waarts, R.G.

Welling, H.

Yaffe, H.H.

Zawischa, I.

Zellmer, H.

Zyskind, J.L.

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

Electron. Lett. (2)

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, “Suppression of stimulated Brillouin scattering in a single-mode fibre by an acoustic-optic modulator,” Electron. Lett. 22, 472–475 (1986)
[Crossref]

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Horowitz, A.R. Chraplyvy, R.W. Tkach, and J.L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997).
[Crossref]

J. Lightwave Technol. (2)

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14, 50–57 (1996)
[Crossref]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin Scattering in Monomode Optical Fiber,” J. Opt. Commun. 4, 10–19 (1983).

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego,2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Brillouin-scattering scheme with two single-frequency lasers separated by twice the Brillouin frequency shift ΔfBS.

Fig. 2.
Fig. 2.

Experimental setup for the evaluation of the SBS-suppression.

Fig. 3.
Fig. 3.

(a) Output power of the amplifier for three different seed configurations, see text for explanation. (b) Typical tuning curve of the backscattered power.

Fig. 4.
Fig. 4.

Dependency of (a) the acceptance-bandwidth and (b) the SBS-suppression factor on the absorbed pump power.

Fig. 5.
Fig. 5.

Typical optical output spectra of the amplifier for (a) only NPRO 1 incident on the amplifier causing cascaded Brillouin scattering and (b) two seed laser frequencies being amplified simultaneously without SBS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d I L ( z ) dz = λ B λ L g B I B ( z ) I L ( z ) β B I L ( z ) α B I L ( z )
d I B ( z ) dz = g B I L ( z ) I B ( z ) + β B I L ( z ) α B I B ( z )
d I B 1 ( z ) dz = g B I B 1 ( z ) ( I L 1 ( z ) I L 2 ( z ) )
ω 3 = 2 ω 1 ω 2
ω 4 = 2 ω 2 ω 1
G = exp ( g max l ) with g max = g p ( P 0 A eff )

Metrics