Abstract

We show time-resolved measurement of Raman gain in Silicon submicron-size planar waveguide using picosecond pump and probe pulses. A net nonlinear gain of 6 dB is obtained in a 7-mm long waveguide with 20.7-W peak pump power. We demonstrate an ultrafast all-optical switch based on the free-carrier dispersion effect in the silicon waveguide, whose transmission is enhanced by more than 13 dB due to the Raman effect.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  2. G. W. Rieger, K. S. Virk, and J. F. Young, �??Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 900-902 (2004).
    [CrossRef]
  3. R. A. Soref and B. R. Bennett, �??Electrooptical effects in silicon,�?? IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  4. R. Clap, D. Dimitropoulos, V. Raghunathan, Y. Han and B. Jalali, �??Observation of stimulated Raman amplification in silicon waveguides,�?? Opt. Express 11, 1731-1739 (2003). <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>
    [CrossRef]
  5. T. K. Liang, H. K. Tsang, �??On Raman gain in silicon waveguides: limitations from two-photon-absorption generated carriers�??, CLEO/IQEC and PhAST Technical Digest on CDROM (The Optical Society of America, Washington, DC, 2004), CThT48.
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  7. S. Stepanov and S. Ruschin, �??Modulation of light by light in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 83, 5151-5153 (2003).
    [CrossRef]
  8. V. Raghunathan, D. Dimitropoulos, R. Claps, and B. Jalali, �?? Wavelength conversion in silicon waveguides using parametric Raman coupling,�?? CLEO/IQEC and PhAST Technical Digest on CDROM (The Optical Society of America, Washington, DC 2004), CMP2.
  9. S. Nakamura, Y.Ueno, and K. Tajima, �??Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier,�?? Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics, 348-349 (2001).
  10. Almeida, R. R. Panepucci, and M. Lipson, �??Nanotaper for compact mode conversion,�?? Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  11. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, �??Full-vectorial mode calculations by finite difference method,�?? IEE Proc.-Optoelectron. 141, 281-286 (1994).
    [CrossRef]
  12. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>
    [CrossRef] [PubMed]
  13. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, �??All-optical control of light on a silicon chip,�?? accepted for publication in Nature (2004).
  14. P. J. Delfyett, R. Dorsinville, and R. R. Alfana, �??Real-time measurements of phonon lifetime using streak-camera-Raman-induced phase-conjugation method,�?? Opt. Lett. 12, 1002-1004 (1987).
    [CrossRef] [PubMed]
  15. T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, �??Characteristics of time-gated Raman amplification in GaP-AlGaP semiconductor waveguides,�?? J. App. Phys. 93, 43-46 (2003).
    [CrossRef]

Appl. Phys. Lett.

M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, �??Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

S. Stepanov and S. Ruschin, �??Modulation of light by light in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 83, 5151-5153 (2003).
[CrossRef]

CLEO 2001

S. Nakamura, Y.Ueno, and K. Tajima, �??Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier,�?? Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics, 348-349 (2001).

CLEO/IQEC and PhAST 2004

V. Raghunathan, D. Dimitropoulos, R. Claps, and B. Jalali, �?? Wavelength conversion in silicon waveguides using parametric Raman coupling,�?? CLEO/IQEC and PhAST Technical Digest on CDROM (The Optical Society of America, Washington, DC 2004), CMP2.

T. K. Liang, H. K. Tsang, �??On Raman gain in silicon waveguides: limitations from two-photon-absorption generated carriers�??, CLEO/IQEC and PhAST Technical Digest on CDROM (The Optical Society of America, Washington, DC, 2004), CThT48.

IEE Proc.-Optoelectron.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, �??Full-vectorial mode calculations by finite difference method,�?? IEE Proc.-Optoelectron. 141, 281-286 (1994).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, �??Electrooptical effects in silicon,�?? IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

J. App. Phys.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, �??Characteristics of time-gated Raman amplification in GaP-AlGaP semiconductor waveguides,�?? J. App. Phys. 93, 43-46 (2003).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, �??All-optical control of light on a silicon chip,�?? accepted for publication in Nature (2004).

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a): Normalized probe transmission versus the relative time delay between the probe and the pump when the λpump = 1589.5 nm, λprobe = 1731.5 nm (red solid line), λpump = 1580.8 nm, λprobe = 1741.1 nm (blue dashed line), respectively. (b): Raman gain versus the relative delay of the probe, obtained from the difference between the two lines in (a).

Fig. 2.
Fig. 2.

The output of the ultrafast switch measured by a 12-GHz detector. Solid line: λprobe = 1549.0 nm, λfilter = 1547.4 nm. Dashed line: λprobe = 1539.0 nm, λfilter = 1537.4 nm. Dotted line: λprobe = 1559.0 nm, λfilter = 1557.4 nm. BW = 0.9 nm is the bandwidth of the Raman spectrum.

Fig. 3.
Fig. 3.

Solid line with rectangles: the transmission enhancement of the ultrafast switch due to the Raman effect versus the peak power of the pump pulse. Dashed line with triangles: FCA on the probe immediately after the pump pulse passes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( t ) = 2 πL λ Δ n ( t ) 0 t β · [ P p ( τ ) A ] 2
Δ ω ( t ) = d dt Δ ϕ ( t ) β [ P p ( t ) A ] 2 .

Metrics