Abstract

We demonstrate a new technique for trapping, sorting, and manipulating cells and micrometer-sized particles within microfluidic systems, using a diode laser bar. This approach overcomes the scaling limitations of conventional scanned laser traps, while avoiding the computational and optical complexity inherent to holographic optical trapping schemes. The diode laser bar enables us to control a large trapping zone, 1 μm by 100 μm, without the necessity of scanning or altering the phase of the beam.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, �??Design of a scanning laser optical trap for multiparticle manipulation,�?? Rev. Sci. Instrum. 71, 2196-2200 (2000).
    [CrossRef]
  2. A. Terray, J. Oakey, and D.W.M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
    [CrossRef] [PubMed]
  3. C. Mio and D. W. M. Marr, �??Optical trapping for the manipulation of colloidal particles,�?? Adv. Mat. 12, 917 (2000).
    [CrossRef]
  4. J. Oakey, J. Allely, and D. W. M. Marr, �??Laminar-flow-based separations at the microscale,�?? Biotechno. Prog. 18, 1439-1442 (2002).
    [CrossRef]
  5. E. R. Dufresne and D. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  7. D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  8. K. Ladavac and D. G. Grier, �??Microoptomechanical pump assembled and driven by holographic optical vortex arrays,�?? Opt. Express 12, 1144-1149 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144</a>.
    [CrossRef] [PubMed]
  9. J. E. Curtis and D. G. Grier, �??Modulated optical vortices,�?? Opt. Lett. 28, 872-874 (2003).
    [CrossRef] [PubMed]
  10. J. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef]
  11. K. Svoboda and S. M. Block, �??Biological applications of optical forces,�?? An. Rev. Biophys. and Biomol. Struc. 23, 247-285 (1994).
    [CrossRef]
  12. A. Ashkin, �??Optical levitation by radiation pressure,�?? Appl. Phys. Lett. 19, 283-285 (1971).
    [CrossRef]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  14. Y. Xia and G.M. Whitesides, �??Soft lithography,�?? An. Rev. Mat. Sci. 28, 153-184 (1998).
    [CrossRef]
  15. D. C. Duffy, O J. A. Schueller, S. T. Brittain, and G. M. Whitesides, �??Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,�?? J. Micromech. Microeng. 9, 211-217 (1999).
    [CrossRef]

Adv. Mat. (1)

C. Mio and D. W. M. Marr, �??Optical trapping for the manipulation of colloidal particles,�?? Adv. Mat. 12, 917 (2000).
[CrossRef]

An. Rev. Biophys. and Biomol. Struc. (1)

K. Svoboda and S. M. Block, �??Biological applications of optical forces,�?? An. Rev. Biophys. and Biomol. Struc. 23, 247-285 (1994).
[CrossRef]

An. Rev. Mat. Sci. (1)

Y. Xia and G.M. Whitesides, �??Soft lithography,�?? An. Rev. Mat. Sci. 28, 153-184 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Ashkin, �??Optical levitation by radiation pressure,�?? Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

Biotechno. Prog. (1)

J. Oakey, J. Allely, and D. W. M. Marr, �??Laminar-flow-based separations at the microscale,�?? Biotechno. Prog. 18, 1439-1442 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

D. C. Duffy, O J. A. Schueller, S. T. Brittain, and G. M. Whitesides, �??Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,�?? J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

Nature (1)

D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Rev. Sci. Inst. (1)

E. R. Dufresne and D. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, �??Design of a scanning laser optical trap for multiparticle manipulation,�?? Rev. Sci. Instrum. 71, 2196-2200 (2000).
[CrossRef]

Science (1)

A. Terray, J. Oakey, and D.W.M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: MOV (99 KB)     
» Media 2: MOV (839 KB)     
» Media 3: MOV (80 KB)     
» Media 4: MOV (94 KB)     
» Media 5: MOV (493 KB)     
» Media 6: MOV (217 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of diode laser bar trapping and imaging system

Fig. 2.
Fig. 2.

Single lines of trapped 1.8 μm colloids, 10 μm colloids, and bovine red blood cells

Fig. 3.
Fig. 3.

Drawing of the razorblade mask

Fig. 4.
Fig. 4.

A montage of a single 1.8 μm polystyrene colloid manually translated the length of the trap

Fig. 5.
Fig. 5.

A montage of a single 10 μm polystyrene colloid manually translated the length of the trap

Fig. 6.
Fig. 6.

A montage of a single bovine red blood cell manually translated the length of the trap

Fig. 7.
Fig. 7.

(104 Kb) A movie of 9 μm particles flowing into the trap line and being diverted (line shows laser location)

Fig. 8.
Fig. 8.

(844 Kb) A 9 μm colloid being moved the length of the trap within a flowing microfluidic channel (line shows laser location)

Fig. 9.
Fig. 9.

(84 Kb) A movie of bovine red blood cells flowing into the trap line and being diverted along the length of the trap (line shows laser location)

Fig. 10.
Fig. 10.

(100 Kb) A movie of bovine blood cells being allowed or disallowed in a region of the flowing channel (line shows laser location)

Fig. 11.
Fig. 11.

A numeric simulation the streamlines and relative flow rates within the 7 channel sorting system

Fig. 12.
Fig. 12.

(500 Kb) A movie of multiple bovine red blood cells. The first is trapped and sent into a different channel. The second is allowed to pass through (line shows laser location).

Fig. 13.
Fig. 13.

(224 Kb) Bovine blood cells directed to different parts of the channel (line shows laser location)

Metrics