Abstract

A novel distributed amplification scheme for quasi-lossless transmission is presented. The system is studied numerically and shown to be able to strongly reduce signal power variations in comparison with currently employed schemes of similar complexity. As an example, variations of less than 3.1 dB for 100 km distance between pumps and below 0.42 dB for 60 km are obtained when using standard single-mode fibre as the transmission medium with an input signal average power of 0 dBm, and a total pump power of about 1.7 W.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Vasilyev, �??Raman-assisted transmission: toward ideal distributed amplification,�?? in Proceedings of Optical Fiber Conference 2003, OSA, WB1, 303 (2003)
  2. J.D. Ania-Castañón and S.K. Turitsyn, �??Noise and gain optimisation in bi-directionally pumped dispersion compensating amplifier modules,�?? Opt. Commun. 224, 107-111 (2003)
    [CrossRef]
  3. T. Okuno, T. Tsuzaki and M. Nishimura, �??Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,�?? IEEE Phot. Technol. Lett. 13, 806-808 (2001)
    [CrossRef]
  4. I.O. Nasieva, J.D. Ania-Castañón and S.K. Turitsyn, �??Nonlinearity management in fibre links with distributed amplification,�?? Electron. Lett. 39, 856-859 (2003)
    [CrossRef]
  5. J. D. Ania-Castañón , I. O. Nasieva , N. Kurukitkoson , S. K. Turitsyn , C. Borsier and E. Pincemin, �??Nonlinearity management in fiber transmission systems with hybrid amplification,�?? Opt. Commun. 233, 353-357 (2004)
    [CrossRef]
  6. J.-C. Bouteiller, K. Brar and C. Headley , �??Quasi-constant signal power transmission,�?? in Proceedings of European Conference on Optical Communications 2002, OSA, S3.04 (2002)
  7. D.A. Chestnut, C.J.S. de Matos, P.C. Reeves-Hall and J.R. Taylor, �??Copropagating and counterpropagating pumps in second-order- pumped discrete fiber Raman amplifiers,�?? Opt. Lett. 27, 1708-1710 (2002)
    [CrossRef]
  8. V.E. Perlin and H. G. Winful, �??On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,�?? in Proceedings of Optical Fiber Conference 2002, OSA, WB1, 178-180 (2002)
  9. L. F. Mollenauer, K. Smith, �??Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,�?? Opt. Lett. 13, 675-677 (1998)
    [CrossRef]
  10. S. A. Babin, D. V. Churkin, E. V. Podivilov, �??Intensity interactions in cascades of a two-stage Raman fiber laser,�?? Opt. Commun. 226, 329-335 (2003)
    [CrossRef]
  11. K. Rottwitt, J.H. Povlsen, A. Bjarklev, �??Long distance transmission through distributed erbium-doped fibers,�?? J. Lightwave Technol. 11, 2105-2115 (1993)
    [CrossRef]
  12. Z. Liao and G. P. Agrawal, �??Role of distributed amplification in designing high-capacity soliton systems,�?? Opt. Express 9, 66-71 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-66">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-66</a>
    [CrossRef] [PubMed]

ECOC 2002 (1)

J.-C. Bouteiller, K. Brar and C. Headley , �??Quasi-constant signal power transmission,�?? in Proceedings of European Conference on Optical Communications 2002, OSA, S3.04 (2002)

Electron. Lett. (1)

I.O. Nasieva, J.D. Ania-Castañón and S.K. Turitsyn, �??Nonlinearity management in fibre links with distributed amplification,�?? Electron. Lett. 39, 856-859 (2003)
[CrossRef]

IEEE Phot. Technol. Lett. (1)

T. Okuno, T. Tsuzaki and M. Nishimura, �??Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,�?? IEEE Phot. Technol. Lett. 13, 806-808 (2001)
[CrossRef]

J. Lightwave Technol. (1)

K. Rottwitt, J.H. Povlsen, A. Bjarklev, �??Long distance transmission through distributed erbium-doped fibers,�?? J. Lightwave Technol. 11, 2105-2115 (1993)
[CrossRef]

Opt. Commun. (3)

S. A. Babin, D. V. Churkin, E. V. Podivilov, �??Intensity interactions in cascades of a two-stage Raman fiber laser,�?? Opt. Commun. 226, 329-335 (2003)
[CrossRef]

J. D. Ania-Castañón , I. O. Nasieva , N. Kurukitkoson , S. K. Turitsyn , C. Borsier and E. Pincemin, �??Nonlinearity management in fiber transmission systems with hybrid amplification,�?? Opt. Commun. 233, 353-357 (2004)
[CrossRef]

J.D. Ania-Castañón and S.K. Turitsyn, �??Noise and gain optimisation in bi-directionally pumped dispersion compensating amplifier modules,�?? Opt. Commun. 224, 107-111 (2003)
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Optical Fiber Conference 2002 (1)

V.E. Perlin and H. G. Winful, �??On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,�?? in Proceedings of Optical Fiber Conference 2002, OSA, WB1, 178-180 (2002)

Optical Fiber Conference 2003 (1)

M. Vasilyev, �??Raman-assisted transmission: toward ideal distributed amplification,�?? in Proceedings of Optical Fiber Conference 2003, OSA, WB1, 303 (2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic depiction of the system.

Fig. 2.
Fig. 2.

(a) Pumps, signal and noise evolution inside the cell for a 60 km cell length. (b) Pumps, signal and noise evolution inside the cell for a 100 km cell length.

Fig. 3.
Fig. 3.

Signal power evolution in the transmission cell for different amplifying solutions, for a cell length of 80 km.

Fig. 4.
Fig. 4.

Signal power variation vs. cell length for single and multiple channels. The dotted line corresponds to direct first order bi-directional amplification.

Tables (1)

Tables Icon

Table 1. Characteristics of the SMF

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d P P 1 ± dz = α 1 P P 1 ± g 1 ν 1 ν 2 P P 1 ± ( P P 2 + + P P 2 + 4 h ν 2 Δ ν 2 ( 1 + 1 e h ( ν 1 ν 2 ) K B T 1 ) ) ± ε 1 P P 1
d P P 2 ± dz = α 2 P P 2 ± ± g 1 ( P P 2 ± + 2 h ν 2 Δ ν 2 ( 1 + 1 e h ( ν 1 ν 2 ) K B T 1 ) ) ( P P 1 + + P P 1 )
g 2 ν 2 ν S P P 2 ± ( P S + N S + + N S + 4 h ν S Δ ν S ( 1 + 1 e h ( ν 2 ν S ) K B T 1 ) ) ± ε 2 P P 2
d P S dz = α S P S + g 2 P S ( P P 2 + + P P 2 )
d N S + dz = α S N S + + g 2 ( N S + + 2 h ν S Δ ν S ( 1 + 1 e h ( ν 2 ν S ) K B T 1 ) ) ( P P 2 + + P P 2 ) + ε S N S
d N S dz = α S N S g 2 ( N S + 2 h ν S Δ ν S ( 1 + 1 e h ( ν 2 ν S ) K B T 1 ) ) ( P P 2 + + P P 2 ) ε S ( P S + N S + )
P P 1 + ( 0 ) = P P 1 ( L ) P 0 ; P P 2 + ( 0 ) = R 1 P P 2 ( 0 ) ; P P 2 ( L ) = R 2 P P 2 + ( L ) ; N S + ( 0 ) = N 0 ; N S ( L ) = 0 ; P S ( 0 ) = P IN

Metrics