Abstract

We report on the experimental demonstration of a white-light supercontinuum generation in normally dispersive singlemode air-silica microstructured fiber. We demonstrate that the simultaneous excitation of the microstuctured fiber in its normal and anomalous dispersion regimes using the fundamental and second harmonic signals of a passively Q-switched microchip laser leads to a homogeneous supercontinuum in the visible range. This pumping scheme allows the suppression of the cascaded Raman effect predominance in favor of an efficient spectrum broadening induced by parametric phenomena. A flat supercontinuum extended from 400 to 700 nm is achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Coherence Tomography and Coherence Techniques, W. Drexler, ed., Proc. SPIE5140 (2003).
  2. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  3. W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
    [Crossref]
  4. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, “Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping,” Appl. Opt. 35, 2548–2553 (1996).
    [Crossref] [PubMed]
  5. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
    [Crossref]
  6. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref] [PubMed]
  7. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [Crossref] [PubMed]
  8. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [Crossref]
  9. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Light. Technol. 5, 1712–1715 (1987).
    [Crossref]
  10. S. Coen, A. Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  11. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser,” Opt. Lett. 28, 1820–1822 (2003).
    [Crossref] [PubMed]
  12. B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.
  13. E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).
  14. P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.
  15. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061–1082 (1992).
    [Crossref]
  16. T. Sylvestre, H. Maillotte, and E. Lantz, “Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,” Electron. Lett. 34, 1417–1418 (1998).
    [Crossref]
  17. S. Pitois, G. Millot, and P. Tchofo Dinda, “Influence of parametric four-wave mixing effects on stimulated Raman scattering in bimodal optical fibers,” Opt. Lett. 23, 1456–1458 (1998).
    [Crossref]
  18. P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte, and E. Lantz, “Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,” J. Opt. Soc. Am. B 16, 757–767 (1999).
    [Crossref]
  19. T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
    [Crossref]

2003 (1)

2002 (1)

1999 (2)

P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte, and E. Lantz, “Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,” J. Opt. Soc. Am. B 16, 757–767 (1999).
[Crossref]

T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
[Crossref]

1998 (2)

T. Sylvestre, H. Maillotte, and E. Lantz, “Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,” Electron. Lett. 34, 1417–1418 (1998).
[Crossref]

S. Pitois, G. Millot, and P. Tchofo Dinda, “Influence of parametric four-wave mixing effects on stimulated Raman scattering in bimodal optical fibers,” Opt. Lett. 23, 1456–1458 (1998).
[Crossref]

1996 (1)

1992 (1)

1989 (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

1987 (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Light. Technol. 5, 1712–1715 (1987).
[Crossref]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

1983 (1)

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

1975 (1)

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

1972 (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Alfano, R. R.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Light. Technol. 5, 1712–1715 (1987).
[Crossref]

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Light. Technol. 5, 1712–1715 (1987).
[Crossref]

Carquille, B.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Coen, S.

Colombeau, B.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Coquet, E.

T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
[Crossref]

P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte, and E. Lantz, “Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,” J. Opt. Soc. Am. B 16, 757–767 (1999).
[Crossref]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Dianov, E. M.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

Fork, R. L.

Froehly, C.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Golovchenko, E.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

Harvey, J. D.

Hing Lun Chau, A.

Hirlimann, C.

Ilev, I.

Knight, J. C.

Koprinkov, I.

Kumagai, H.

Lantz, E.

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Leonhardt, R.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Louradour, F.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte, and E. Lantz, “Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,” J. Opt. Soc. Am. B 16, 757–767 (1999).
[Crossref]

T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
[Crossref]

T. Sylvestre, H. Maillotte, and E. Lantz, “Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,” Electron. Lett. 34, 1417–1418 (1998).
[Crossref]

Mamyshev, P. V.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.

Millot, G.

Monneret, J.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Mussot, A.

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Pilipetskii, A. N.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

Pitois, S.

Provino, L.

Reynaud, F.

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Russell, P. St. J.

Sam, C. L.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

Seymour, R. J.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Sylvestre, T.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte, and E. Lantz, “Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,” J. Opt. Soc. Am. B 16, 757–767 (1999).
[Crossref]

T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
[Crossref]

T. Sylvestre, H. Maillotte, and E. Lantz, “Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,” Electron. Lett. 34, 1417–1418 (1998).
[Crossref]

Tchofo Dinda, P.

Thuy, C. D.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Tomlinson, W. J.

Toyoda, K.

Trillo, S.

Vertikov, A. P.

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.

Wabnitz, S.

Wadsworth, W. J.

Weigmann, H. J.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Yen, R.

Yu, W.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Electron. Lett. (1)

T. Sylvestre, H. Maillotte, and E. Lantz, “Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,” Electron. Lett. 34, 1417–1418 (1998).
[Crossref]

J. Light. Technol. (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Light. Technol. 5, 1712–1715 (1987).
[Crossref]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, “Parametric suppression of stimulated Raman scattering,” JETP Lett. 50, 190–193 (1989).

Opt. Commun. (3)

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[Crossref]

T. Sylvestre, H. Maillotte, P. Tchofo Dinda, and E. Coquet, “Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,” Opt. Commun. 159, 32–36 (1999).
[Crossref]

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Other (3)

Optical Coherence Tomography and Coherence Techniques, W. Drexler, ed., Proc. SPIE5140 (2003).

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour, and C. Froehly, “Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,” presented at the Dixièmes Journées Nationales d’Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up and cross sectional scanning electron microscope image of the microstructured air-silica fiber.

Fig. 2.
Fig. 2.

Computed chromatic dispersion (a) and effective area (b) of the fundamental mode of the microstructured fiber versus the wavelength. Inset: transverse energy distribution calculated at λ = 800 nm.

Fig. 3.
Fig. 3.

Continuum generation in normal dispersion regime in the case of single (a) and dual (b) pump configuration. Pictures: diffracted beams. Graph: corresponding recorded power spectra. (a) The cascaded Raman effect is clearly visible in the presence of a single pump (532 nm). (b) The spectrum smoothly and symmetrically broadens when a second pump (1064 nm) is added. The corresponding singlemode transverse energy distribution is shown in inset (far field pattern).

Fig. 4.
Fig. 4.

Continuum power spectrum measured in the infrared range (anomalous dispersion regime).

Fig. 5.
Fig. 5.

Continuum power spectrum obtained in the visible range when using both 532 and 1064 nm pumps, but for an insufficient value of ratio Pω/P.

Fig. 6.
Fig. 6.

Infrared continuum power spectrum obtained in a microstructured fiber fabricated at IRCOM with non flame fused silica glass. No more OH- absorption peak is observable at 1400 nm.

Metrics