Abstract

We report on the experimental demonstration of a white-light supercontinuum generation in normally dispersive singlemode air-silica microstructured fiber. We demonstrate that the simultaneous excitation of the microstuctured fiber in its normal and anomalous dispersion regimes using the fundamental and second harmonic signals of a passively Q-switched microchip laser leads to a homogeneous supercontinuum in the visible range. This pumping scheme allows the suppression of the cascaded Raman effect predominance in favor of an efficient spectrum broadening induced by parametric phenomena. A flat supercontinuum extended from 400 to 700 nm is achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Optical Coherence Tomography and Coherence Techniques, W. Drexler, ed., Proc. SPIE 5140 (2003).
  2. R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000 �? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  3. W. Yu, R. R. Alfano, C. L. Sam and R. J. Seymour, �??Spectral broadening of picosecond 1.06 µm pulse in KBr,�?? Opt. Commun. 14, 344-347 (1975).
    [CrossRef]
  4. I. Ilev, H. Kumagai, K. Toyoda and I. Koprinkov, �??Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping,�?? Appl. Opt. 35, 2548-2553 (1996).
    [CrossRef] [PubMed]
  5. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann and C. D. Thuy, �??An anomalous frequency broadening in water,�?? Opt. Commun. 4, 413-415 (1972).
    [CrossRef]
  6. P. B. Corkum, C. Rolland and T. Srinivasan-Rao, �??Supercontinuum generation in gases,�?? Phys. Rev. Lett. 57, 2268-2271 (1986).
    [CrossRef] [PubMed]
  7. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen and W. J. Tomlinson, �??Femtosecond white-light continuum pulses,�?? Opt. Lett. 8, 1-3 (1983).
    [CrossRef] [PubMed]
  8. C. Lin and R. H. Stolen, �??New nanosecond continuum for excited-state spectroscopy,�?? Appl. Phys. Lett. 28, 216-218 (1976).
    [CrossRef]
  9. P. L. Baldeck and R. R. Alfano, �??Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,�?? J. Light. Technol. 5, 1712-1715 (1987).
    [CrossRef]
  10. S. Coen, A. Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  11. A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, �??Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,�?? Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  12. B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour and C. Froehly, �??Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,�?? presented at the Dixièmes Journées Nationales d�??Optique Guidée, Jouy-en-Josas, France, Aug. 1989.
  13. E. Golovchenko, E. M. Dianov, P. V. Mamyshev and A. N. Pilipetskii, �??Parametric suppression of stimulated Raman scattering,�?? JETP Lett. 50, 190-193 (1989).
  14. P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.
  15. S. Trillo and S. Wabnitz, �??Parametric and Raman amplification in birefringent fibers,�?? J. Opt. Soc. Am. B 9, 1061-1082 (1992).
    [CrossRef]
  16. T. Sylvestre, H. Maillotte and E. Lantz, �??Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,�?? Electron. Lett. 34, 1417-1418 (1998).
    [CrossRef]
  17. S. Pitois, G. Millot and P. Tchofo Dinda, �??Influence of parametric four-wave mixing effects on stimulated Raman scattering in bimodal optical fibers,�?? Opt. Lett. 23, 1456-1458 (1998).
    [CrossRef]
  18. P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte and E. Lantz, �??Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,�?? J. Opt. Soc. Am. B 16, 757-767 (1999).
    [CrossRef]
  19. T. Sylvestre, H. Maillotte, P. Tchofo Dinda and E. Coquet, �??Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,�?? Opt. Commun. 159, 32-36 (1999).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, �??New nanosecond continuum for excited-state spectroscopy,�?? Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Dixièmes Journées Nat. d???Optique Guidée (1)

B. Colombeau, J. Monneret, F. Reynaud, B. Carquille, F. Louradour and C. Froehly, �??Réduction du gain de la diffusion Raman stimulée dans les fibres optiques unimodales de silice,�?? presented at the Dixièmes Journées Nationales d�??Optique Guidée, Jouy-en-Josas, France, Aug. 1989.

Electron. Lett. (1)

T. Sylvestre, H. Maillotte and E. Lantz, �??Stimulated Raman suppression under dual-frequency pumping in singlemode fibres,�?? Electron. Lett. 34, 1417-1418 (1998).
[CrossRef]

J. Light. Technol. (1)

P. L. Baldeck and R. R. Alfano, �??Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,�?? J. Light. Technol. 5, 1712-1715 (1987).
[CrossRef]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev and A. N. Pilipetskii, �??Parametric suppression of stimulated Raman scattering,�?? JETP Lett. 50, 190-193 (1989).

Opt. Commun. (3)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann and C. D. Thuy, �??An anomalous frequency broadening in water,�?? Opt. Commun. 4, 413-415 (1972).
[CrossRef]

T. Sylvestre, H. Maillotte, P. Tchofo Dinda and E. Coquet, �??Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,�?? Opt. Commun. 159, 32-36 (1999).
[CrossRef]

W. Yu, R. R. Alfano, C. L. Sam and R. J. Seymour, �??Spectral broadening of picosecond 1.06 µm pulse in KBr,�?? Opt. Commun. 14, 344-347 (1975).
[CrossRef]

Opt. Lett. (3)

OSA Technical Digest Series (1)

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), p. 130.

Phys. Rev. Lett. (2)

P. B. Corkum, C. Rolland and T. Srinivasan-Rao, �??Supercontinuum generation in gases,�?? Phys. Rev. Lett. 57, 2268-2271 (1986).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000 �? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Proc. SPIE (1)

Optical Coherence Tomography and Coherence Techniques, W. Drexler, ed., Proc. SPIE 5140 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up and cross sectional scanning electron microscope image of the microstructured air-silica fiber.

Fig. 2.
Fig. 2.

Computed chromatic dispersion (a) and effective area (b) of the fundamental mode of the microstructured fiber versus the wavelength. Inset: transverse energy distribution calculated at λ = 800 nm.

Fig. 3.
Fig. 3.

Continuum generation in normal dispersion regime in the case of single (a) and dual (b) pump configuration. Pictures: diffracted beams. Graph: corresponding recorded power spectra. (a) The cascaded Raman effect is clearly visible in the presence of a single pump (532 nm). (b) The spectrum smoothly and symmetrically broadens when a second pump (1064 nm) is added. The corresponding singlemode transverse energy distribution is shown in inset (far field pattern).

Fig. 4.
Fig. 4.

Continuum power spectrum measured in the infrared range (anomalous dispersion regime).

Fig. 5.
Fig. 5.

Continuum power spectrum obtained in the visible range when using both 532 and 1064 nm pumps, but for an insufficient value of ratio Pω/P.

Fig. 6.
Fig. 6.

Infrared continuum power spectrum obtained in a microstructured fiber fabricated at IRCOM with non flame fused silica glass. No more OH- absorption peak is observable at 1400 nm.

Metrics