Abstract

From calibrated, weakly scattering tissue phantoms (2–6 mm-1), we extract the attenuation coefficient with an accuracy of 0.8 mm-1 from OCT data in the clinically relevant ‘fixed focus’ geometry. The data are analyzed using a single scattering model and a recently developed description of the confocal point spread function (PSF). We verify the validity of the single scattering model by a quantitative comparison with a multiple scattering model, and validate the use of the PSF on the calibrated samples. Implementation of this model for existing OCT systems will be straightforward. Localized quantitative measurement of the attenuation coefficient of different tissues can significantly improve the clinical value of OCT.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett, 29, 480-482 (2004).
    [CrossRef] [PubMed]
  3. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, �??Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett, 28, 905-907 (2003).
    [CrossRef]
  4. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, �??Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,�?? Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef] [PubMed]
  5. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, �??Noninvasive monitoring of glucose concentration with optical coherence tomography,�?? Opt. Lett. 26, 992-994 (2001).
    [CrossRef]
  6. A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, R.O. Esenaliev, �??Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography�??, Appl. Opt. 42, 3027-3037 (2003).
    [CrossRef] [PubMed]
  7. L. Thrane, H. T. Yura, and P. E. Andersen, �??Analysis of optical coherence tomography systems based on the extended HuygensFresnel principle,�?? J. Opt. Soc. Am. A 17, 484-490 (2000).
    [CrossRef]
  8. D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, P.R. Hansen, �??Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,�?? Opt. Express 12, 249-259 (2004).
    [CrossRef] [PubMed]
  9. A. Knuettel, S. Bonev, W. Knaak, �??New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,�?? J. Biomed. Opt. 9, 232-273 (2004).
  10. J. A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, J.G. ujimoto, �??Optical coherence microscopy in scattering media,�?? Opt. Lett. 19, 590-592 (1994).
    [CrossRef] [PubMed]
  11. A.I.Kholodnykh, I.Y. Petrova, M. Motamedi, R.O. Esenaliev, �??Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography�??, IEEE J. Sel. Top. Quantum Electron. 9, 210- 221 (2003)
    [CrossRef]
  12. T.G. van Leeuwen, D.J. Faber, M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
    [CrossRef]
  13. W. H. Press, �??Numerical Recipes�?? (Cambridge University Press, Cambridge, 1986).
  14. D.G. Altman, �??Practical statistics for medical research�?? (Chapman&Hall, London, 1991).
  15. J. Swartling, J. S. Dam, and S. Andersson-Engels, �??Comparison of Spatially and Temporally Resolved Diffuse-Reflectance Measurement Systems for Determination of Biomedical Optical Properties�?? Appl. Opt. 42, 4612-4620 (2003).
    [CrossRef] [PubMed]
  16. G.A. Massey, A.E. Siegman, �??Reflection and refraction of Gaussian light beams at tilted ellipsoidal surfaces,�?? Appl. Opt. 8, 975-978 (1969)
    [CrossRef] [PubMed]
  17. J.M. Schmitt, A. Knüttel, R.F. Bonner, �??Measurement of optical properties of biological tissues by low-coherence reflectometry,�?? Appl. Opt 32(30), 6032.
    [PubMed]
  18. F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, T.G. van Leeuwen, �??Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography�??, submitted to IEEE transactions on Medical Imaging, 2004..

Appl. Opt (1)

J.M. Schmitt, A. Knüttel, R.F. Bonner, �??Measurement of optical properties of biological tissues by low-coherence reflectometry,�?? Appl. Opt 32(30), 6032.
[PubMed]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (2)

A.I.Kholodnykh, I.Y. Petrova, M. Motamedi, R.O. Esenaliev, �??Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography�??, IEEE J. Sel. Top. Quantum Electron. 9, 210- 221 (2003)
[CrossRef]

T.G. van Leeuwen, D.J. Faber, M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

IEEE transactions on Medical Imaging (1)

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, T.G. van Leeuwen, �??Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography�??, submitted to IEEE transactions on Medical Imaging, 2004..

J. Biomed. Opt. (1)

A. Knuettel, S. Bonev, W. Knaak, �??New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,�?? J. Biomed. Opt. 9, 232-273 (2004).

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett (1)

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett, 29, 480-482 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, �??Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,�?? Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

W. H. Press, �??Numerical Recipes�?? (Cambridge University Press, Cambridge, 1986).

D.G. Altman, �??Practical statistics for medical research�?? (Chapman&Hall, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

comparison of attenuation coefficients extracted from epoxy samples A1-E1 using integrating sphere measurements (from ref [15]), and curve fitting using models I,II and III. The error bars represent 95% confidence intervals of the extracted fit parameter.

Fig. 2.
Fig. 2.

Schematic illustration of the OCT measurement method. A: OCT images of the scattering samples are taken for different positions zcf of the focus in the sample (indexed i,j,k). B: From each image, the average A-scan is calculated. C: All average A-scans are combined into a data set, shown as a gray scale image, where the horizontal axis corresponds the focus position in the sample (i.e. to the location of the confocal gate), and the vertical axis corresponds to depth (i.e. to the location of the coherence gate or position of a ‘reflector’).

Fig. 3.
Fig. 3.

(a) Gray scale image of recorded data set of sample A1; (b) confocal PSF (dots) along dashed line in A, and best fit (solid); (c) blue circles: zR for specular reflection and 95% c.i; red squares: average zR and s.d. for diffuse reflection in different (mfp) intervals. Dashed lines: expected zR for both cases.

Fig. 4.
Fig. 4.

(a) extraction of data with a fixed distance between coherence and confocal gates. The dashed lines represent zero (1) distance i.e. corresponding to dynamic focusing, and non-zero (negative) distance (2). (b) fitted attenuation coefficient vs distance between confocal and coherence gate for all 5 epoxy samples.

Fig. 5.
Fig. 5.

Average A-scan of sample B1, with the focus fixed at z=0.3 mm (black line); best fits to the data with equation 5 using α=2 (red line) and α=1 (blue line).

Fig. 6.
Fig. 6.

Left panel: ‘fixed focus’ attenuation coefficient vs. position of the focus in the sample (with respect to sample boundary). Right panel: ‘fixed focus’ attenuation coefficient, averaged over all focus positions vs. attenuation coefficient determined by dynamic focusing (DF). The line y=x is drawn as a guide to the eye. In all fits, α=2 is used.

Fig. 7.
Fig. 7.

Average OCT A-scan data (thin gray line) of the region depicted in the OCT image in the inset; and the fitted signal using equation 4 (thick black lines) and corresponding attenuation coefficients for the inimal region and a lipid rich region. The arrow shows the location of the focus in the sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ 2 = i = 1 N ( y i f ( x i ; a 1 a M ) σ i ) 2
i ( z ) exp ( 2 μ t z )
i ( z ) [ exp ( 2 μ s z ) + 2 exp ( μ s z ) [ 1 exp ( μ s z ) ] 1 + w s 2 w h 2 + [ 1 exp ( μ s z ) ] 2 w h 2 w s 2 ] 1 2
h ( z ) = ( ( z z cf z R ) 2 + 1 ) 1
i ( z ) 1 ( z z cf z R ) 2 + 1 · e 2 μ t z

Metrics