Abstract

From calibrated, weakly scattering tissue phantoms (2–6 mm-1), we extract the attenuation coefficient with an accuracy of 0.8 mm-1 from OCT data in the clinically relevant ‘fixed focus’ geometry. The data are analyzed using a single scattering model and a recently developed description of the confocal point spread function (PSF). We verify the validity of the single scattering model by a quantitative comparison with a multiple scattering model, and validate the use of the PSF on the calibrated samples. Implementation of this model for existing OCT systems will be straightforward. Localized quantitative measurement of the attenuation coefficient of different tissues can significantly improve the clinical value of OCT.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
    [CrossRef] [PubMed]
  3. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
    [CrossRef]
  4. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
    [CrossRef] [PubMed]
  5. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).
    [CrossRef]
  6. A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, and R.O. Esenaliev, “Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography”, Appl. Opt. 42, 3027–3037 (2003).
    [CrossRef] [PubMed]
  7. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended HuygensFresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [CrossRef]
  8. D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
    [CrossRef] [PubMed]
  9. A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).
  10. J. A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef] [PubMed]
  11. A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
    [CrossRef]
  12. T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
    [CrossRef]
  13. W. H. Press, “Numerical Recipes” (Cambridge University Press, Cambridge,1986).
  14. D.G. Altman, “Practical statistics for medical research” (Chapman&Hall, London,1991).
  15. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of Spatially and Temporally Resolved Diffuse-Reflectance Measurement Systems for Determination of Biomedical Optical Properties” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  16. G.A. Massey and A.E. Siegman, “Reflection and refraction of Gaussian light beams at tilted ellipsoidal surfaces,” Appl. Opt. 8, 975–978 (1969)
    [CrossRef] [PubMed]
  17. J.M. Schmitt, A. Knüttel, and R.F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32(30), 6032.
    [PubMed]
  18. F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

2004 (3)

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).

2003 (5)

A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, and R.O. Esenaliev, “Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography”, Appl. Opt. 42, 3027–3037 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
[CrossRef]

T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[CrossRef]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of Spatially and Temporally Resolved Diffuse-Reflectance Measurement Systems for Determination of Biomedical Optical Properties” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

1994 (2)

J. A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1969 (1)

Aalders, M.C.

T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[CrossRef]

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Ahnelt, P. K.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Altman, D.G.

D.G. Altman, “Practical statistics for medical research” (Chapman&Hall, London,1991).

Andersen, C.B.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Andersen, P. E.

Andersen, P.E.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Andersson-Engels, S.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of Spatially and Temporally Resolved Diffuse-Reflectance Measurement Systems for Determination of Biomedical Optical Properties” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

Anger, E. M.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Bonev, S.

A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).

Bonner, R.F.

J.M. Schmitt, A. Knüttel, and R.F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32(30), 6032.
[PubMed]

Bouma, B.E.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Cense, B.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.C.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Cowey, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Dam, J. S.

de Boer, J.F.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Drexler, W.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Esenaliev, R. O.

Esenaliev, R.O.

A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, and R.O. Esenaliev, “Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography”, Appl. Opt. 42, 3027–3037 (2003).
[CrossRef] [PubMed]

A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
[CrossRef]

Faber, D.J.

T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[CrossRef]

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Flotte, T.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frosz, M.H.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Fujimoto, J.G.

J. A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hansen, P.R.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Hee, M.R.

J. A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jung, G.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Kholodnykh, A.I.

A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
[CrossRef]

A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, and R.O. Esenaliev, “Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography”, Appl. Opt. 42, 3027–3037 (2003).
[CrossRef] [PubMed]

Knaak, W.

A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).

Knuettel, A.

A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

J.M. Schmitt, A. Knüttel, and R.F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32(30), 6032.
[PubMed]

Larin, K. V.

Larin, K.V.

Larina, I. V.

Le, T.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Leeuwen, T.G. van

T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[CrossRef]

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Levitz, D.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Lin, C.P.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Massey, G.A.

Meer, F.J. van der

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Morgan, J. E.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Motamedi, M.

Nassif, N.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Owen, G.M.

Park, B.H.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Pasterkamp, G.

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Petrova, I.Y.

A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
[CrossRef]

A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, M. Motamedi, and R.O. Esenaliev, “Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography”, Appl. Opt. 42, 3027–3037 (2003).
[CrossRef] [PubMed]

Povazay, B.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Press, W. H.

W. H. Press, “Numerical Recipes” (Cambridge University Press, Cambridge,1986).

Puliafito, C.A.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sassoon, D.M. Baraznji

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Sattmann, H.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Schmitt, J.M.

J.M. Schmitt, A. Knüttel, and R.F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32(30), 6032.
[PubMed]

Schubert, C.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Schuman, J.S.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Siegman, A.E.

Stingl, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Stinson, W.G.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E.A.

Swartling, J.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of Spatially and Temporally Resolved Diffuse-Reflectance Measurement Systems for Determination of Biomedical Optical Properties” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

Tearney, G.J.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Tempea, G.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Thrane, L.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended HuygensFresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

Unterhuber, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Valanciunaite, J.

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Yakovlev, V.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Yun, S.H.

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Yura, H. T.

Appl. Opt (1)

J.M. Schmitt, A. Knüttel, and R.F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32(30), 6032.
[PubMed]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (2)

A.I. Kholodnykh, I.Y. Petrova, M. Motamedi, and R.O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography”, IEEE J. Sel. Top. Quantum Electron. 9, 210–221 (2003)
[CrossRef]

T.G. van Leeuwen, D.J. Faber, and M.C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[CrossRef]

J. Biomed. Opt. (1)

A. Knuettel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt. 9, 232–273 (2004).

J. Opt. Soc. Am. A (1)

Opt. Lett (1)

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,”Opt. Lett,  29, 480–482 (2004).
[CrossRef] [PubMed]

Opt. Lett, (1)

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost TiAl 2 O 3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett, 28, 905–907 (2003).
[CrossRef]

Opt. Lett. (2)

Opt.Express (1)

D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt.Express 12, 249–259 (2004).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

W. H. Press, “Numerical Recipes” (Cambridge University Press, Cambridge,1986).

D.G. Altman, “Practical statistics for medical research” (Chapman&Hall, London,1991).

F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography”, submitted to IEEE transactions on Medical Imaging, 2004..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

comparison of attenuation coefficients extracted from epoxy samples A1-E1 using integrating sphere measurements (from ref [15]), and curve fitting using models I,II and III. The error bars represent 95% confidence intervals of the extracted fit parameter.

Fig. 2.
Fig. 2.

Schematic illustration of the OCT measurement method. A: OCT images of the scattering samples are taken for different positions zcf of the focus in the sample (indexed i,j,k). B: From each image, the average A-scan is calculated. C: All average A-scans are combined into a data set, shown as a gray scale image, where the horizontal axis corresponds the focus position in the sample (i.e. to the location of the confocal gate), and the vertical axis corresponds to depth (i.e. to the location of the coherence gate or position of a ‘reflector’).

Fig. 3.
Fig. 3.

(a) Gray scale image of recorded data set of sample A1; (b) confocal PSF (dots) along dashed line in A, and best fit (solid); (c) blue circles: zR for specular reflection and 95% c.i; red squares: average zR and s.d. for diffuse reflection in different (mfp) intervals. Dashed lines: expected zR for both cases.

Fig. 4.
Fig. 4.

(a) extraction of data with a fixed distance between coherence and confocal gates. The dashed lines represent zero (1) distance i.e. corresponding to dynamic focusing, and non-zero (negative) distance (2). (b) fitted attenuation coefficient vs distance between confocal and coherence gate for all 5 epoxy samples.

Fig. 5.
Fig. 5.

Average A-scan of sample B1, with the focus fixed at z=0.3 mm (black line); best fits to the data with equation 5 using α=2 (red line) and α=1 (blue line).

Fig. 6.
Fig. 6.

Left panel: ‘fixed focus’ attenuation coefficient vs. position of the focus in the sample (with respect to sample boundary). Right panel: ‘fixed focus’ attenuation coefficient, averaged over all focus positions vs. attenuation coefficient determined by dynamic focusing (DF). The line y=x is drawn as a guide to the eye. In all fits, α=2 is used.

Fig. 7.
Fig. 7.

Average OCT A-scan data (thin gray line) of the region depicted in the OCT image in the inset; and the fitted signal using equation 4 (thick black lines) and corresponding attenuation coefficients for the inimal region and a lipid rich region. The arrow shows the location of the focus in the sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ 2 = i = 1 N ( y i f ( x i ; a 1 a M ) σ i ) 2
i ( z ) exp ( 2 μ t z )
i ( z ) [ exp ( 2 μ s z ) + 2 exp ( μ s z ) [ 1 exp ( μ s z ) ] 1 + w s 2 w h 2 + [ 1 exp ( μ s z ) ] 2 w h 2 w s 2 ] 1 2
h ( z ) = ( ( z z cf z R ) 2 + 1 ) 1
i ( z ) 1 ( z z cf z R ) 2 + 1 · e 2 μ t z

Metrics