Abstract

Based on the transparency of corneal tissue and on laser plasma mediated non-thermal tissue ablation, near infrared femtosecond lasers are promising tools for minimally invasive intrastromal refractive surgery. Femtosecond lasers also enable novel nonlinear optical imaging methods like second harmonic corneal imaging. The microscopic effects of femtosecond laser intrastromal surgery were successfully visualized by using second harmonic corneal imaging with diffraction limited resolution, strong imaging contrast and large sensing depth, without requiring tissue fixation or sectioning. The performance of femtosecond laser intrastromal surgery proved to be precise, repeatable and predictable. It might be possible to integrate both surgical and probing functions into a single femtosecond laser system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Juhasz, F. H. Loesel, C. Horvath, R. M. Kurtz, G. Mourou, �??Corneal Refractive Surgery with Femtosecond Lasers," IEEE J. Sel. Top. Quantum Electron. 5, 902-910(1999)
    [CrossRef]
  2. "New Frontiers in Vision and Aberration-Free Refractive Surgery,�?? edited by J.F. Bille, C.F.H Harner, F. Loesel, Springer Press, Heidelberg, Germany (2002)
  3. F. H. Loesel, M.H. Niemz, J.F. Bille and T. Juhasz, �??Laser-Induced Optical Breakdown on Hard and Soft Tissues and Its Dependence on the Pulse Duration: Experiment and Model," IEEE J. Quantum Electron. 32, 1717- 1722(1996)
    [CrossRef]
  4. A.T. Yeh, N. Nassif, A. Zoumi and B.J. Tromberg, �??Selective corneal imaging using combined second-harmonic generation and two-photon excited f luorescence," Opt. Lett. 27, 2082-2084 (2002)
    [CrossRef]
  5. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi and M. D. Gorrell, �??3-Dimensional Imaging of Collagen Using Second Harmonic Generation,�?? J. Structure Biology 141, 53-62 (2003)
    [CrossRef]
  6. R. Gauderon, P.B. Lukins, C. J. R. Sheppard, �??Optimization of second harmonic generation microscopy,�?? Micron. 32, 691-700( 2002)
    [CrossRef]
  7. P. J. Campagnola, H.A. Clark, W.A. Mohler, A. Lewis and L.M. Loew, �??Second-harmonic Imaging Microscopy of Living Cells," J. Biomed. Opt. 6, 277-286 (2001)
    [CrossRef] [PubMed]
  8. M. Han, L. Zickler, G. Giese, F. Loesel, M. Walter and J. Bille, �??Second Harmonic Corneal Imaging after femtosecond laser surgery,�?? J. Biomed. Opt. 9, 760-766(2004)
    [CrossRef] [PubMed]
  9. J. H. Marburger, "Self-focusing: theory," Prog. Quantum Electron. 4, 35-110 (1975)
    [CrossRef]
  10. S. Roth and I. Freund, �??Coherent Optical Harmonic Generation in Rat-tail,�?? Opt. Commun. 33, 292-296 (1980)
    [CrossRef]
  11. C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, "Compact Directly Diode-pumped Femtosecond Nd:glass Chirped-pulse-amplication Laser System", Opt. Lett. 22, 1790-1792 (1997)
    [CrossRef]
  12. G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, W Ertmer, "Chemical and Physical Side Effects at Application of Ultrashort Laser Pulses for Intrastromal Refracitve Surgery,�?? J. Opt. A 2, 59-64 (2000)
    [CrossRef]

IEEE J. Quantum Electron (1)

F. H. Loesel, M.H. Niemz, J.F. Bille and T. Juhasz, �??Laser-Induced Optical Breakdown on Hard and Soft Tissues and Its Dependence on the Pulse Duration: Experiment and Model," IEEE J. Quantum Electron. 32, 1717- 1722(1996)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Juhasz, F. H. Loesel, C. Horvath, R. M. Kurtz, G. Mourou, �??Corneal Refractive Surgery with Femtosecond Lasers," IEEE J. Sel. Top. Quantum Electron. 5, 902-910(1999)
[CrossRef]

J. Biomed. Opt. (2)

P. J. Campagnola, H.A. Clark, W.A. Mohler, A. Lewis and L.M. Loew, �??Second-harmonic Imaging Microscopy of Living Cells," J. Biomed. Opt. 6, 277-286 (2001)
[CrossRef] [PubMed]

M. Han, L. Zickler, G. Giese, F. Loesel, M. Walter and J. Bille, �??Second Harmonic Corneal Imaging after femtosecond laser surgery,�?? J. Biomed. Opt. 9, 760-766(2004)
[CrossRef] [PubMed]

J. Opt. A (1)

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, W Ertmer, "Chemical and Physical Side Effects at Application of Ultrashort Laser Pulses for Intrastromal Refracitve Surgery,�?? J. Opt. A 2, 59-64 (2000)
[CrossRef]

J. Structure Biology (1)

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi and M. D. Gorrell, �??3-Dimensional Imaging of Collagen Using Second Harmonic Generation,�?? J. Structure Biology 141, 53-62 (2003)
[CrossRef]

Micron. (1)

R. Gauderon, P.B. Lukins, C. J. R. Sheppard, �??Optimization of second harmonic generation microscopy,�?? Micron. 32, 691-700( 2002)
[CrossRef]

Opt. Commun. (1)

S. Roth and I. Freund, �??Coherent Optical Harmonic Generation in Rat-tail,�?? Opt. Commun. 33, 292-296 (1980)
[CrossRef]

Opt. Lett. (2)

Prog. Quantum Electron. (1)

J. H. Marburger, "Self-focusing: theory," Prog. Quantum Electron. 4, 35-110 (1975)
[CrossRef]

Springer Press (1)

"New Frontiers in Vision and Aberration-Free Refractive Surgery,�?? edited by J.F. Bille, C.F.H Harner, F. Loesel, Springer Press, Heidelberg, Germany (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic drawing of the diode pumped Nd:glass fs surgical laser system. The seed pulse from the Nd:glass fs pulse oscillator is amplified by a Chirped-Pulse-Amplification unit. The pulse is stretched and compressed by a single holographic transmission grating. FR: Faraday Rotator, PBS: Polarized Beam Splitter, λ/4: Quarter waveplate.

Fig. 2.
Fig. 2.

(a) Two-photon excited fluorescence imaging of keratocyte cell nuclei stained with DAPI. (b) SHG imaging of the collagen fiber network surrounding the cell nuclei. The perimeters of the keratocyte nuclei are outlined. The image fields for both imaging modes are identical, located at the depth of 200 μm below the epithelium. Bars: 10 μm

Fig. 3.
Fig. 3.

(a) Corneal flap revealed by SHG imaging. The laser resection plane (posterior surface) is indicated by arrows. (b) Three dimensional SHG visualization of the intrastromal cavities and the collateral effects (microstreaks) through YZ optical sectioning. The microstreaks are pointed out by open arrows. Bars: 20 μm

Metrics