Abstract

Anti-resonant reflecting photonic crystal structure is employed in vertical cavity surface emitting lasers (VCSELs) to achieve photon confinement in lateral direction. Such a design is promising in supporting large-aperture single-mode emission. In the configuration, hexagonal arrays of high-index cylinders which run vertically in the cladding region are introduced in the VCSEL’s top DBR (p-DBR) mirror region. The transverse modal property of the proposed structure, especially leakage loss, has been theoretically investigated. An optimum design for the minimum radiation loss while maintaining single-mode operation has been discussed in this paper.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C, Caneau, and C. J. Chang-Haisnain, �??Single-mode, passive antiguide vertical cavity surface emitting laser,�?? IEEE J. Sel. Top. Quantum Electron.. 1, 629-637 (1995).
    [CrossRef]
  2. L. J. Mawst, �?? �??anti�?? up the aperture,�?? IEEE circuits & devices magazine 19, 34-41 (2003).
    [CrossRef]
  3. D. Zhou and L. J. Mawst, �??High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,�?? IEEE J. Quantum. Electron. 38, 1599-1605 (2002).
    [CrossRef]
  4. D. S. Song, S.H. Kim, H.G. Park, C.K. Kim and Y.H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers�??, Appl. Phys. Lett. 80, 3901-3903 (2002).
    [CrossRef]
  5. A. J. Danner, J. J. Raffery, N. Yokouchi etc., �??Transverse modes of photonic crystal vertical-cavity lasers�??, Appl. Phys. Lett. 84, 1031-1033 (2004).
    [CrossRef]
  6. D. S. Song, Y. J. Lee,H.W. Choi, and Y.H. Lee, �??Polarized-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers�??, Appl. Phys. Lett. 82, 3182-3184 (2003).
    [CrossRef]
  7. G. R. Hardley, �??Effective index model for vertical-cavity surface-emitting lasers,�?? Opt. Lett. 20, 1483- 1485 (1995).
    [CrossRef]
  8. N. M. Litchiniser, A. K. Abeeluck, C. Headley and B. J. Eggtleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  9. A. K. Abeeluck, N. M.Litchinister, C. Headley, and B. J. Eggleton, �??Analysis of spectral characteristics of photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
    [CrossRef] [PubMed]
  10. T.P.White, B.T.Kuhlmey, R.C.McPhedram, etc., �?? Multipole method for microstructured optical fibers, I. Formulation,�?? J. Opt. Soc. Am. B. 19, 2322-2330 (2002).
    [CrossRef]
  11. T.P.White, R.C.McPhedran, and C. M. D. Sterke, �??Resonance and scattering in microstructured optical fibers,�?? Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  12. N. M. Litchinister, S. C. Dunn, etc., �??Resonances in microstructured optical waveguides,�?? Opt. Express 11, 1243-1251 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243</a>.
    [CrossRef]

Appl. Phys. Lett.

D. S. Song, S.H. Kim, H.G. Park, C.K. Kim and Y.H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers�??, Appl. Phys. Lett. 80, 3901-3903 (2002).
[CrossRef]

A. J. Danner, J. J. Raffery, N. Yokouchi etc., �??Transverse modes of photonic crystal vertical-cavity lasers�??, Appl. Phys. Lett. 84, 1031-1033 (2004).
[CrossRef]

D. S. Song, Y. J. Lee,H.W. Choi, and Y.H. Lee, �??Polarized-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers�??, Appl. Phys. Lett. 82, 3182-3184 (2003).
[CrossRef]

IEEE circuits & devices magazine

L. J. Mawst, �?? �??anti�?? up the aperture,�?? IEEE circuits & devices magazine 19, 34-41 (2003).
[CrossRef]

IEEE J. Quantum. Electron.

D. Zhou and L. J. Mawst, �??High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,�?? IEEE J. Quantum. Electron. 38, 1599-1605 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C, Caneau, and C. J. Chang-Haisnain, �??Single-mode, passive antiguide vertical cavity surface emitting laser,�?? IEEE J. Sel. Top. Quantum Electron.. 1, 629-637 (1995).
[CrossRef]

J. Opt. Soc. Am. B.

T.P.White, B.T.Kuhlmey, R.C.McPhedram, etc., �?? Multipole method for microstructured optical fibers, I. Formulation,�?? J. Opt. Soc. Am. B. 19, 2322-2330 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of anti-resonant reflecting photonic crystal VCSEL. (b) Waveguide incorporated in ARRP -VCSEL after Hardley model. (c) Cross section of the ARRP -VCSEL, the black regions represent high index cylinders.

Fig. 2.
Fig. 2.

Transverse electric field of: (a) HE11y mode; (b) TE 01 mode; (c) TM 01 mode; (d) HE 21 mode. (e) is for Ey field of HE11y mode and (f) for Ey field of TE 01 mode.

Fig. 3.
Fig. 3.

The modal loss of HE 11 (dotted line) and TE 01 (solid line) modes with the change of the wavelength.

Fig. 4.
Fig. 4.

Map of phtonics bandgaps found for cladding photonic crystal structure.

Tables (1)

Tables Icon

Table 1. Mode effective refractive index for the first four modes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J l ( k ex d 2 ) = 0
d · π λ n cylinder 2 n core 2 = roots ( J l )

Metrics