Abstract

We observe for the first time net optical gain in a low loss silicon waveguide in silicon-on-insulator (SOI) based on stimulated Raman scattering with a pulsed pump laser at 1.545 μm. We show that pulsed pumping with a pulse width narrower than the carrier recombination lifetime in SOI significantly reduces the free carrier generation rate due to two-photon absorption (TPA) in silicon. For a 4.8 cm long waveguide with an effective core area of ~1.57 μm2, we obtained a net gain of 2 dB with a pump pulse width of ~17 ns and a peak pump power of ~470 mW inside the waveguide.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Claps, D. Dimitropoulos, and B. Jalali, �??Stimulated Raman scattering in silicon waveguides,�?? IEEE Electron. Lett. 38, 1352-1354 (2002).
    [CrossRef]
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, �??Observation of stimulated Raman amplification in silicon waveguides,�?? Opt. Express 11, 1731-1739 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>.
    [CrossRef] [PubMed]
  3. T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  4. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. (in press).
  5. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
  6. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari,�??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  7. M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  8. D. F. Edwards, �??Silicon (Si),�?? in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), pp. 547-569.
  9. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
    [CrossRef]
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition (Artech House, Boston, 2000).
  11. R. A. Soref and P. J. Lorenzo, �??All-silicon active and passive guided-wave components for λ=1.3 and 1.6 µm,�?? IEEE J. Quantum Electron. QE-22, 873-879 (1986).
    [CrossRef]
  12. D. V. Thourhout, C. R. Doerr, C. H. Joyner, and J. L. Pleumeekers, �??Observation of WDM crosstalk in passive semiconductor waveguides,�?? IEEE Photonic Technol. Lett. 13, 457-459 (2001).
    [CrossRef]
  13. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, �??Nonlinear absorption in a GaAs waveguide just above half the band gap,�?? IEEE J. Quantum Electron. QE-30, 1172-1174 (1994).
    [CrossRef]
  14. R. A. Soref and B. R. Bennett, �??Kramers-Kronig analysis of electro-optical switching in silicon,�?? Proc. SPIE 704, 32-37 (1986).
  15. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, �??Observation of Raman emission in silicon waveguides at 1.54 µm,�?? Opt. Express 10, 1305-1313 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305</a>.
    [CrossRef] [PubMed]
  16. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, �??Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. QE-26, 1815-1820 (1990).
    [CrossRef]

Appl. Phys. Lett. (3)

T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari,�??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

IEEE Electron. Lett. (1)

R. Claps, D. Dimitropoulos, and B. Jalali, �??Stimulated Raman scattering in silicon waveguides,�?? IEEE Electron. Lett. 38, 1352-1354 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. A. Soref and P. J. Lorenzo, �??All-silicon active and passive guided-wave components for λ=1.3 and 1.6 µm,�?? IEEE J. Quantum Electron. QE-22, 873-879 (1986).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, �??Nonlinear absorption in a GaAs waveguide just above half the band gap,�?? IEEE J. Quantum Electron. QE-30, 1172-1174 (1994).
[CrossRef]

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, �??Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. QE-26, 1815-1820 (1990).
[CrossRef]

IEEE Photonic Technol. Lett. (1)

D. V. Thourhout, C. R. Doerr, C. H. Joyner, and J. L. Pleumeekers, �??Observation of WDM crosstalk in passive semiconductor waveguides,�?? IEEE Photonic Technol. Lett. 13, 457-459 (2001).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

R. A. Soref and B. R. Bennett, �??Kramers-Kronig analysis of electro-optical switching in silicon,�?? Proc. SPIE 704, 32-37 (1986).

Other (5)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. (in press).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).

D. F. Edwards, �??Silicon (Si),�?? in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), pp. 547-569.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the SOI waveguide used in our simulation and experiment.

Fig. 2.
Fig. 2.

Simulated pump pulse propagation along a silicon waveguide of 4.8 cm with input peak pump intensity of I0 =50 MW/cm2 and input pulse width of T0 =17 ns. The TPA coefficient is β=0.5 cm/GW. The carrier lifetime is τ=25 ns.

Fig. 3.
Fig. 3.

Modeled free carrier density profile generated by the TPA in a 4.8 cm long silicon waveguide for different positions, i.e. z=0, 2.4, and 4.8 cm.

Fig. 4.
Fig. 4.

Modeled free carrier density profile of a silicon waveguide at z=0 excited by a pulsed laser with various pulse widths. The peak input intensity is I0 =50 MW/cm2. The TPA coefficient is β=0.5 cm/GW. The carrier lifetime is τ=25 ns.

Fig. 5.
Fig. 5.

(a) Measured probe signal gain and loss profile generated by a pulsed pump of 470 mW peak power at 1545 nm. The pump beam is TE polarized and the probe beam is TM polarized. Black trace: the probe is at Stokes wavelength of 1680 nm (on Raman wavelength). Red trace: the probe is detuned from the Stokes wavelength by ~2 nm (off Raman wavelength). Note that the probe signal level represents the linear optical loss of the waveguide when the pump pulse is off. (b) Modeled probe signal profile with τ25 ns, T0 =17 ns, and I0 =30 MW/cm2. The Raman gain coefficient of gr =10.5 cm/GW was used on Raman wavelength.

Fig. 6.
Fig. 6.

Net Raman gain as a function of the pump intensity for a 4.8 cm long silicon waveguide. Symbols represent the experimental results and solid curve is the modeling result. The Raman gain coefficient used in the simulation is gr =10.5 cm/GW. The other parameters are pulse width T0 =17 ns and carrier lifetime τ=25 ns.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dN t z dt = β 2 hv I 2 t z N t z τ
I t 0 = I 0 exp ( 4 ln 2 t 2 T 0 2 )
dI t z dz = αI t z β I 2 t z σN t z I t z
d I s t z dz = α I s t z ( 2 β g r ) I t z I s t z σN t z I s t z
G = 10 log I out I in

Metrics