Abstract

We describe a system for parametric conversion of high-energy, Q-switched laser pulses from 1.064μm to 2.1μm in KTiOPO4. High beam quality and efficiency are obtained by use of a two-stage system: An optical parametric oscillator (OPO) pumped by a narrow beam with 8 mJ of energy, generates 1.9 mJ of signal energy for seeding an optical parametric amplifier (OPA). With 500 mJ pump energy, different OPA configurations produce up to 138 mJ signal energy with M 2 ≈ 2.3.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.A. Rines, D.M. Rines, and P.F. Moulton, �??Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,�?? in Advanced Solid State Lasers , T.Y. Fan and B.H.T. Chai, eds., Vol. 20 of OSA Proceedings, (Optical Society of America, Washington DC, 1994), pp. 461-463.
  2. M.S.Webb, P.F. Moulton, J.J. Kasinski, R.L. Burnham, G. Loiacono, and R. Stolzenberger, �??High-average-power KTiOAsO4 optical parametric oscillator,�?? Opt. Lett. 23, 1161-1163 (1998).
    [CrossRef]
  3. A.V. Smith and M.S. Bowers, �??Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,�?? J. Opt. Soc. Am. B 18, 706-713 (2001).
    [CrossRef]
  4. B.C. Johnson, V.J. Newell, J.B. Clark and E.S. McPhee, �??Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,�?? J. Opt. Soc. Am. B 12, 2122-2127 (1995).
    [CrossRef]
  5. W.A. Neuman and S.P. Velsko, �??Effect of cavity design on optical parametric oscillator performance�??, in Advanced Solid State Lasers , S.A. Payne and C.R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 1996), pp. 179-181.
  6. J.N. Farmer, M.S. Bowers and W.S. Scharpf, �??High brightness eyesafe optical parametric oscillator using confocal unstable resonators�??, in Advanced Solid State Lasers, M.M. Fejer and H. Injeyan and U. Keller, eds., Vol. 26 of Trends in Optics and Photonics, (Optical Society of America, Washington DC, 1999), pp. 567-571.
  7. S. Haidar and H. Ito, �??Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,�?? Opt. Commun. 171, 171-176 (1999).
    [CrossRef]
  8. Y. Ehrlich, S. Pearl, and S. Fastig, �??High brightness tunable tandem optical parametric oscillator at 8-12 µm�??, in Advanced Solid State Photonics, G. Quarles, ed., Vol. 94 of Trends in Optics and Photonics, (Optical Society of America, Washington DC, 2004).
  9. D.J. Armstrong and A.V. Smith, �??Demonstration of improved beam quality in an image-rotating optical parametric oscillator,�?? Opt. Lett. 27, 40-42 (2002).
    [CrossRef]
  10. A.V. Smith and D.J. Armstrong, �??Nanosecond optical parametric oscillator with 90 image rotation: design and performance,�?? J. Opt. Soc. Am. B 19, 1801-1814 (2002).
    [CrossRef]
  11. G.T. Moore and K. Koch, �??Efficient high-gain two-crystal optical parametric oscillator,�?? IEEE J. Quantum Electron. 31, 761-768 (1995).
    [CrossRef]
  12. W.R. Bosenberg and D.R. Guyer, �??Broadly tunable, single-frequency optical parametric frequency-conversion system,�?? J. Opt. Soc. Am. B 10, 1716-1722 (1993).
    [CrossRef]
  13. J.C. McCarthy, R.C. Day, and E. Chicklis, �??Novel, efficient, high brightness KTP optical parametric oscillator-amplifier in single beamline,�?? in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 2001), pp. 656-659.
  14. R.W. Boyd, Nonlinear optics, (Academic Press, San Diego, 1992).
  15. S.J. Brosnan and R.L. Byer, �??Optical parametric oscillator threshold and linewidth studies,�?? IEEE J. Quantum Electron. 15, 415-431 (1979).
    [CrossRef]
  16. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M.D. Perry, �??Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  17. M. Missey, V. Dominic, and P.E. Powers, �??Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,�?? Opt. Lett. 24, 1227-1229 (1999).
    [CrossRef]
  18. G. Arisholm, R. Paschotta, and T. Sdmeyer, �??Limits to the power scalability of high-gain optical parametric amplifiers,�?? J. Opt. Soc. Am. B 21, 578-590 (2004).
    [CrossRef]
  19. A. Fragemann, V. Pasiskevicius, G. Karlsson, and F. Laurell, �??High-peak power nanosecond optical parametric amplifier with periodically poled KTP,�?? Opt. Express 11, 1297-1302 (2003).
    [CrossRef] [PubMed]
  20. W.A. Neuman, �??OPO performance with an aberreated input pump beam,�?? in Nonlinear frequency generation and conversion, M.C. Gupta, W.J. Kozlovsky, and D.C. MacPherson, eds., Proc. SPIE 2700, 250-261 (1996).
    [CrossRef]
  21. L.R. Marshall, A. Kaz, and O. Aytur, �??Multimode pumping of optical parametric oscillators,�?? IEEE J. Quantum Electron. 32, 177-182 (1996).
    [CrossRef]
  22. International Organization for Standardization, �??Lasers and laser-related equipment �?? Test methods for laser beam parameters �?? Beam widths, divergence angle and beam propagation factor,�?? ISO 11146, (Geneva, 1999).

Advanced Solid State Lasers (1)

G.A. Rines, D.M. Rines, and P.F. Moulton, �??Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,�?? in Advanced Solid State Lasers , T.Y. Fan and B.H.T. Chai, eds., Vol. 20 of OSA Proceedings, (Optical Society of America, Washington DC, 1994), pp. 461-463.

IEEE J. Quantum Electron. (3)

G.T. Moore and K. Koch, �??Efficient high-gain two-crystal optical parametric oscillator,�?? IEEE J. Quantum Electron. 31, 761-768 (1995).
[CrossRef]

S.J. Brosnan and R.L. Byer, �??Optical parametric oscillator threshold and linewidth studies,�?? IEEE J. Quantum Electron. 15, 415-431 (1979).
[CrossRef]

L.R. Marshall, A. Kaz, and O. Aytur, �??Multimode pumping of optical parametric oscillators,�?? IEEE J. Quantum Electron. 32, 177-182 (1996).
[CrossRef]

ISO (1)

International Organization for Standardization, �??Lasers and laser-related equipment �?? Test methods for laser beam parameters �?? Beam widths, divergence angle and beam propagation factor,�?? ISO 11146, (Geneva, 1999).

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

S. Haidar and H. Ito, �??Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,�?? Opt. Commun. 171, 171-176 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M.D. Perry, �??Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Proc. SPIE (1)

W.A. Neuman, �??OPO performance with an aberreated input pump beam,�?? in Nonlinear frequency generation and conversion, M.C. Gupta, W.J. Kozlovsky, and D.C. MacPherson, eds., Proc. SPIE 2700, 250-261 (1996).
[CrossRef]

Trends in Optics and Photonics (4)

J.C. McCarthy, R.C. Day, and E. Chicklis, �??Novel, efficient, high brightness KTP optical parametric oscillator-amplifier in single beamline,�?? in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 2001), pp. 656-659.

Y. Ehrlich, S. Pearl, and S. Fastig, �??High brightness tunable tandem optical parametric oscillator at 8-12 µm�??, in Advanced Solid State Photonics, G. Quarles, ed., Vol. 94 of Trends in Optics and Photonics, (Optical Society of America, Washington DC, 2004).

W.A. Neuman and S.P. Velsko, �??Effect of cavity design on optical parametric oscillator performance�??, in Advanced Solid State Lasers , S.A. Payne and C.R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 1996), pp. 179-181.

J.N. Farmer, M.S. Bowers and W.S. Scharpf, �??High brightness eyesafe optical parametric oscillator using confocal unstable resonators�??, in Advanced Solid State Lasers, M.M. Fejer and H. Injeyan and U. Keller, eds., Vol. 26 of Trends in Optics and Photonics, (Optical Society of America, Washington DC, 1999), pp. 567-571.

Other (1)

R.W. Boyd, Nonlinear optics, (Academic Press, San Diego, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental layout of the OPO and the OPA. The number of crystals in the OPA was varied between 2 and 4, and idler filters could be inserted between some of the crystals.

Fig. 2.
Fig. 2.

Signal energy vs. pump energy for the OPO.

Fig. 3.
Fig. 3.

Signal beam of the OPO after an f = 200mm lens, measured with the pyroelectric camera. The pump energy was 8 mJ. (a) Waist. (b) Far field (after the lens, not directly from the OPO). The x and y coordinates correspond to the critical and noncritical directions, respectively. All fluence data have been normalized to unity peak value.

Fig. 4.
Fig. 4.

Signal energy vs. pump energy for OPAs with 2, 3, or 4 crystals. The red and green curves correspond to the OPAs with idler filters after certain crystals, as shown in the legends.

Fig. 5.
Fig. 5.

Waist (a) and far-field (b) measured after an f = 500mm lens in the signal beam from the 4-crystal OPO with idler filters after crystals 2 and 3. The pump energy was 500 mJ.

Tables (1)

Tables Icon

Table 1. Beam parameters for the signal from the OPO and various OPA configurations, and for the idler from the two-crystal OPA. All the OPAs were pumped by 500 mJ. The numbers in the OPA configurations indicate the number of crystals, and the suffixes B or C indicate configurations with idler output coupling. The widths d and θ are two times the 16%-84% knife-edge width, and the x and y coordinates correspond to the critical and noncritical directions, respectively. M 2 is an estimate of the overall beam quality, based on the RMS values of the x and y widths. The last column shows the signal (or idler) energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t b 2 G L c n ( L c g + ln ( R ) 2 ln ( 2 ) ) c .

Metrics