Abstract

We propose a novel all-optical wavelength auto-router based on spatial solitons. By using the swing effect of spatial solitons in a Kerr-type nonlinear medium, the proposed nonlinear waveguide structure could function as a self-routing wavelength division multiplexer (WDM). It could be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
    [CrossRef]
  2. R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
    [CrossRef]
  3. Y. D. Wu, “All-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics. 23.4, (2004) (to be published).
  4. Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).
  5. Y. D. Wu and B. X. Huang, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan ☐ 164 (2003).
  6. F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
    [CrossRef]
  7. Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
    [CrossRef]
  8. Y. D. Wu, “Coupled-soliton all-optical logic device with two parallel tapered waveguides,” Fiber and Integrated Optics. (2004) (to be published).
    [CrossRef]
  9. N. T. Vukovic and B. Milovanovic, “Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks.500 (2001).
  10. M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
    [CrossRef]
  11. F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
    [CrossRef]
  12. R.A. Sammut, Q. Y. Li, and C. Pask, “Variational approximations and mode stability in planar nonlinear waveguides,” J. Opt. Soc. Am. B 9, 884 (1992).
    [CrossRef]
  13. Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).
    [CrossRef]
  14. A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
    [CrossRef]

2004 (1)

Y. D. Wu, “All-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics. 23.4, (2004) (to be published).

2001 (2)

F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
[CrossRef]

1997 (2)

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
[CrossRef]

1992 (1)

1990 (1)

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).
[CrossRef]

1989 (1)

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
[CrossRef]

1988 (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

1964 (1)

R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
[CrossRef]

Aceves, A. B.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
[CrossRef]

Banerjee, D.

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Bertolotii, M.

F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

Bertolotti, M.

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
[CrossRef]

Borelly, M. S.

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Chen, M. H.

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).

Chiang, K. H.

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).

Chu, C. H.

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
[CrossRef]

Chung, Y.

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).
[CrossRef]

Ciao, R. Y.

R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
[CrossRef]

Dagli, N.

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).
[CrossRef]

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

Garzia, F.

F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
[CrossRef]

Gramire, E.

R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
[CrossRef]

Huang, B. X.

Y. D. Wu and B. X. Huang, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan ☐ 164 (2003).

Jue, J. P.

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Li, Q. Y.

Milovanovic, B.

N. T. Vukovic and B. Milovanovic, “Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks.500 (2001).

Moloney, J. V.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
[CrossRef]

Mukherjee, B.

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Newell, A. C.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
[CrossRef]

Pask, C.

Ramamurthy, B.

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Sammut, R.A.

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

Sibilia, C.

F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

Tasy, R. Z.

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).

Townes, C. H.

R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
[CrossRef]

Vukovic, N. T.

N. T. Vukovic and B. Milovanovic, “Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks.500 (2001).

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

Wu, Y. D.

Y. D. Wu, “All-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics. 23.4, (2004) (to be published).

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
[CrossRef]

Y. D. Wu, “Coupled-soliton all-optical logic device with two parallel tapered waveguides,” Fiber and Integrated Optics. (2004) (to be published).
[CrossRef]

Y. D. Wu and B. X. Huang, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan ☐ 164 (2003).

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

Fiber and Integrated Optics. (2)

Y. D. Wu, “All-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics. 23.4, (2004) (to be published).

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics. 20, 517 (2001).
[CrossRef]

IEEE J. Lightwave Technol. (1)

F. Garzia, C. Sibilia, and M. Bertolotii, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).
[CrossRef]

J. Lightwave Technol. (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Optics Comm. (1)

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial soliton,” Optics Comm. 139, 193 (1997).
[CrossRef]

Phy Rev A. (1)

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy Rev A. 39, 1809 (1989).
[CrossRef]

Phys. Lett. (1)

R. Y. Ciao, E. Gramire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Lett. 13, 479 (1964).
[CrossRef]

Proc. IEEE. (1)

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE. 85, 1274 (1997).
[CrossRef]

Other (4)

Y. D. Wu, “Coupled-soliton all-optical logic device with two parallel tapered waveguides,” Fiber and Integrated Optics. (2004) (to be published).
[CrossRef]

N. T. Vukovic and B. Milovanovic, “Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks.500 (2001).

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Photonics Taiwan ☐ 215 (2003).

Y. D. Wu and B. X. Huang, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan ☐ 164 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The proposed nonlinear waveguide structure of the all-optical wavelength auto-router.

Fig. 2.
Fig. 2.

The position shift Δd is plotted as a function of the input wavelengthλi with (a) λi =1290nm to λi =1330nm, L 2 = 1269μm , θ = 2.7°, P 0 =50W/m , (b) λi =1530nm to λi =1570nm, L 2 = 1365μm , θ = 2.2°, P 0=70W/m.

Fig. 3.
Fig. 3.

The coupling efficiency of the input signal as a function of the input wavelengthλi in (a) 1310nm, (b) 1550nm spectral region.

Fig. 4.
Fig. 4.

The evolutions of the input signal beams propagating along the structure with the wavelength of the input signal beams in (a) 1310nm, (b) 1550nm spectral region.

Fig. 5.
Fig. 5.

The signal beam position at the end of the output section with the wavelength of the input signal beams in (a) 1310nm, (b) 1550nm spectral region.

Tables (1)

Tables Icon

Table 1. (a) The transmission efficiency Po /Pi as a function of the wavelength of the input signal beams in (a)1310nm, (b)1550nm, spectral region.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε x z t = E x z exp [ j ( ωt β k 0 z ) ]
2 k 0 E z + 2 E x 2 + k 0 2 [ n i 2 x z E 2 β 2 ] E = 0 , i = f , c , u
n i 2 = n i 0 2 + α E 2

Metrics