Abstract

We propose a novel all-optical wavelength auto-router based on spatial solitons. By using the swing effect of spatial solitons in a Kerr-type nonlinear medium, the proposed nonlinear waveguide structure could function as a self-routing wavelength division multiplexer (WDM). It could be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, �??Third order nonlinear integrated optics,�?? J. Lightwave Technol. 6, 953 (1988).
    [CrossRef]
  2. R. Y. Ciao, E. Gramire, C. H. Townes, �??Self-trapping of optical beams,�?? Phys. Lett. 13, 479 (1964).
    [CrossRef]
  3. Y. D. Wu, �??All-Optical switching device by using the spatial soliton collision,�?? Fiber and Integrated Optics 23, 4 (2004) (to be published).
  4. Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, �??New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,�?? Optics and Photonics Taiwan, 215 (2003).
  5. Y. D. Wu, B. X. Huang, �??All-optical switching device by using the interaction of spatial solitons,�?? Optics and Photonics Taiwan, 164 (2003).
  6. F. Garzia, C. Sibilia, and M. Bertolotii, �??New phase modulation technique based on spatial soliton switching,�?? IEEE J. Lightwave Technol. 19, 1036 (2001).
    [CrossRef]
  7. Y. D. Wu, M. H. Chen, and C. H. Chu, �??All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,�?? Fiber and Integrated Optics 20, 517 (2001).
    [CrossRef]
  8. Y. D. Wu, �??Coupled-soliton all-optical logic device with two parallel tapered waveguides,�?? Fiber and Integrated Optics, (2004) (to be published).
    [CrossRef]
  9. N. T. Vukovic, B. Milovanovic, �??Realization of full set of logic gates for all-optical ultrafast switching,�?? IEEE Telsiks, 500 (2001).
  10. M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, �??Optical Components for WDM Lightwave Networks,�?? Proc. IEEE 85, 1274 (1997).
    [CrossRef]
  11. F. Garzia, C. Sibilia, and M. Bertolotti, �??Swing effect of spatial soliton,�?? Optics Commun. 139, 193 (1997).
    [CrossRef]
  12. R.A. Sammut, Q. Y. Li, and C. Pask, �??Variational approximations and mode stability in planar nonlinear waveguides,�?? J. Opt. Soc. Am. B 9, 884 (1992).
    [CrossRef]
  13. Y. Chung and N. Dagli, �??As assessment of finite difference beam propagation method,�?? IEEE J. Quantum Electron. 26, 1335 (1990).
    [CrossRef]
  14. A. B. Aceves, J. V. Moloney, and A. C. Newell, �??Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,�?? Phys. Rev. A 39, 1809 (1989).
    [CrossRef]

Fiber and Integrated Optics (3)

Y. D. Wu, �??All-Optical switching device by using the spatial soliton collision,�?? Fiber and Integrated Optics 23, 4 (2004) (to be published).

Y. D. Wu, M. H. Chen, and C. H. Chu, �??All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,�?? Fiber and Integrated Optics 20, 517 (2001).
[CrossRef]

Y. D. Wu, �??Coupled-soliton all-optical logic device with two parallel tapered waveguides,�?? Fiber and Integrated Optics, (2004) (to be published).
[CrossRef]

IEEE J. Lightwave Technol. (1)

F. Garzia, C. Sibilia, and M. Bertolotii, �??New phase modulation technique based on spatial soliton switching,�?? IEEE J. Lightwave Technol. 19, 1036 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Chung and N. Dagli, �??As assessment of finite difference beam propagation method,�?? IEEE J. Quantum Electron. 26, 1335 (1990).
[CrossRef]

IEEE Telsiks (1)

N. T. Vukovic, B. Milovanovic, �??Realization of full set of logic gates for all-optical ultrafast switching,�?? IEEE Telsiks, 500 (2001).

J. Lightwave Technol. (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, �??Third order nonlinear integrated optics,�?? J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Optics and Photonics Taiwan (2)

Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, �??New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,�?? Optics and Photonics Taiwan, 215 (2003).

Y. D. Wu, B. X. Huang, �??All-optical switching device by using the interaction of spatial solitons,�?? Optics and Photonics Taiwan, 164 (2003).

Optics Comm. (1)

F. Garzia, C. Sibilia, and M. Bertolotti, �??Swing effect of spatial soliton,�?? Optics Commun. 139, 193 (1997).
[CrossRef]

Phy. Rev A. (1)

A. B. Aceves, J. V. Moloney, and A. C. Newell, �??Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,�?? Phys. Rev. A 39, 1809 (1989).
[CrossRef]

Phys. Lett. (1)

R. Y. Ciao, E. Gramire, C. H. Townes, �??Self-trapping of optical beams,�?? Phys. Lett. 13, 479 (1964).
[CrossRef]

Proc. IEEE (1)

M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, �??Optical Components for WDM Lightwave Networks,�?? Proc. IEEE 85, 1274 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The proposed nonlinear waveguide structure of the all-optical wavelength auto-router.

Fig. 2.
Fig. 2.

The position shift Δd is plotted as a function of the input wavelengthλi with (a) λi =1290nm to λi =1330nm, L 2 = 1269μm , θ = 2.7°, P 0 =50W/m , (b) λi =1530nm to λi =1570nm, L 2 = 1365μm , θ = 2.2°, P 0=70W/m.

Fig. 3.
Fig. 3.

The coupling efficiency of the input signal as a function of the input wavelengthλi in (a) 1310nm, (b) 1550nm spectral region.

Fig. 4.
Fig. 4.

The evolutions of the input signal beams propagating along the structure with the wavelength of the input signal beams in (a) 1310nm, (b) 1550nm spectral region.

Fig. 5.
Fig. 5.

The signal beam position at the end of the output section with the wavelength of the input signal beams in (a) 1310nm, (b) 1550nm spectral region.

Tables (1)

Tables Icon

Table 1. (a) The transmission efficiency Po /Pi as a function of the wavelength of the input signal beams in (a)1310nm, (b)1550nm, spectral region.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε x z t = E x z exp [ j ( ωt β k 0 z ) ]
2 k 0 E z + 2 E x 2 + k 0 2 [ n i 2 x z E 2 β 2 ] E = 0 , i = f , c , u
n i 2 = n i 0 2 + α E 2

Metrics