Abstract

Photonic millimeter-wave generation from high-order frequency-multiplied optical pulse-train of Erbium-doped fiber laser (EDFL) harmonic mode-locked at repetition frequency of 1 GHz is demonstrated. A Fabry-Perot laser diode (FPLD) operated at below threshold condition is employed as an intra-cavity optical mode-locker, which is purely sinusoidal-wave-modulated at 1 GHz without any DC biased current in this experiment. The threshold modulating power of 18 dBm for the FPLD is observed for harmonic mode-locking the EDFL. The frequency-multiplication of EDFL pulse-train is implemented by detuning the modulating frequency of the FPLD. At highest repetition rate of 42 GHz, the peak power and pulseswidth of frequency-multiplied EDFL pulse-train are 140 mW and 2.7 ps, respectively.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Jung, J.-L. Shen, D. T. K. Tong, S. Murthy, M. C. Wu, T. Tanbun-Ek, W. Wang, R. Lodenkamper, R. Davis, L. J. Lembo, and J. C. Brock, �??CW injection locking of a mode-locked semiconductor laser as a local oscillator comb for channelizing broad-band RF signals,�?? IEEE Trans. Microwave Theory Tech. 47, 1225-1232 (1999).
    [CrossRef]
  2. A. J. Lowery and P. C. R. Gurney, �??Comparison of optical processing techniques for optical microwave signal generation,�?? IEEE Trans. Microwave Theory Tech. 46, 142-150 (1998).
    [CrossRef]
  3. E. Hashimoto, A. Takada, and Y. Katagiri, �??High-frequency synchronized signal generation using semiconductor lasers,�?? IEEE Trans. Microwave Theory Tech. 47, 1206-1218 (1999).
    [CrossRef]
  4. X. S. Yao and L. Maleki, �??Optoelectronic oscillator for photonic systems,�?? IEEE J. Quantum Electron. 32, 1141-1149 (1996).
    [CrossRef]
  5. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, �??1 Tbit/s (100 Gbit/s �?10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,�?? Electron. Lett. 32, 906-907 (1996).
    [CrossRef]
  6. H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, �??Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre lasers with an all-polarisation maintaining ring cavity,�?? Electron. Lett. 28, 2095-2096 (1992).
    [CrossRef]
  7. T. Pfeiffer and G. Veith, �??40 GHz pulse generation using a widely tunable all polarization preserving erbium fibre ring laser,�?? Electron. Lett. 29, 1849-1850 (1993).
    [CrossRef]
  8. K. K. Gupta and D. Novak, �??Millimetre-wave repetition-rate optical pulse train generation in a harmonically modelocked fibre ring laser,�?? Electron. Lett. 23, 1330-1331 (1997).
    [CrossRef]
  9. J. S. Wey, J. Goldhar, and G. L. Burdge, �??Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,�?? J. Lightwave Technol. 15, 1171-1180 (1997).
    [CrossRef]
  10. M. J. Guy, J. R. Taylor, and K. Wakita, �??10 GHz 1.9 ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630-1632 (1997).
    [CrossRef]
  11. S. Yang, Z. Li, X. Dong, S. Yuan, G. Kai, and Q. Zhao, �??Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,�?? IEEE Photon. Technol. Lett. 14, 774-776 (2002).
    [CrossRef]
  12. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photon. Technol. Lett. 12, 25-27 (2000).
    [CrossRef]
  13. M. Margalit, M. Orenstein, and G. Eisenstein, �??High-repetition-rate mode-locked Er-doped fiber lasers by harmonic injection locking,�?? Opt. Lett. 20, 1791-1793 (1995).
    [CrossRef] [PubMed]
  14. M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580-1581 (2000).
    [CrossRef]
  15. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, �??Generation of synchronized subterahertz optical pulse trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,�?? IEEE Photon. Technol. Lett. 10, 209-211 (1998).
    [CrossRef]
  16. T. Papakyriakopoulos, K. Vlachos, A. Hatzieeremidis, and H. Avramopoulos, �??Optical clock repetitionratemultiplier for high-speed digital optical logic circuits,�?? Opt. Lett. 24, 717-719 (1999).
    [CrossRef]

Electron. Lett. (6)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, �??1 Tbit/s (100 Gbit/s �?10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,�?? Electron. Lett. 32, 906-907 (1996).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, �??Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre lasers with an all-polarisation maintaining ring cavity,�?? Electron. Lett. 28, 2095-2096 (1992).
[CrossRef]

T. Pfeiffer and G. Veith, �??40 GHz pulse generation using a widely tunable all polarization preserving erbium fibre ring laser,�?? Electron. Lett. 29, 1849-1850 (1993).
[CrossRef]

K. K. Gupta and D. Novak, �??Millimetre-wave repetition-rate optical pulse train generation in a harmonically modelocked fibre ring laser,�?? Electron. Lett. 23, 1330-1331 (1997).
[CrossRef]

M. J. Guy, J. R. Taylor, and K. Wakita, �??10 GHz 1.9 ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630-1632 (1997).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580-1581 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, �??Optoelectronic oscillator for photonic systems,�?? IEEE J. Quantum Electron. 32, 1141-1149 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, �??Generation of synchronized subterahertz optical pulse trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,�?? IEEE Photon. Technol. Lett. 10, 209-211 (1998).
[CrossRef]

S. Yang, Z. Li, X. Dong, S. Yuan, G. Kai, and Q. Zhao, �??Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,�?? IEEE Photon. Technol. Lett. 14, 774-776 (2002).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

T. Jung, J.-L. Shen, D. T. K. Tong, S. Murthy, M. C. Wu, T. Tanbun-Ek, W. Wang, R. Lodenkamper, R. Davis, L. J. Lembo, and J. C. Brock, �??CW injection locking of a mode-locked semiconductor laser as a local oscillator comb for channelizing broad-band RF signals,�?? IEEE Trans. Microwave Theory Tech. 47, 1225-1232 (1999).
[CrossRef]

A. J. Lowery and P. C. R. Gurney, �??Comparison of optical processing techniques for optical microwave signal generation,�?? IEEE Trans. Microwave Theory Tech. 46, 142-150 (1998).
[CrossRef]

E. Hashimoto, A. Takada, and Y. Katagiri, �??High-frequency synchronized signal generation using semiconductor lasers,�?? IEEE Trans. Microwave Theory Tech. 47, 1206-1218 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. S. Wey, J. Goldhar, and G. L. Burdge, �??Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,�?? J. Lightwave Technol. 15, 1171-1180 (1997).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The setup of FPLD mode-locked EDFL. AMP: RF power amplifier; BPF: bandpass filter; EDFA: Erbium-doped fiber amplifier; FPLD: Fabry-Perot laser diode; ISO: optical isolator; OC: optical coupler; RFS: radio-frequency synthesizer.

Fig. 2.
Fig. 2.

The operation of FPLD at loss-modulation and gain-switching modes, and the original or amplified trace of a loss-modulated FPLD.

Fig. 3.
Fig. 3.

The harmonic and rational harmonic mode-locked EDFL pulses at repetition rates of 2 GHz, 6 GHz, 8 GHz, and 10 GHz.

Fig. 4.
Fig. 4.

Electrical spectra of FPLD mode-locked and frequency-multiplied EDFL pulses at (a) 10 GHz, (b) 20GHz, (c) 30 GHz, and (d) 40 GHz.

Fig. 5.
Fig. 5.

The peak and DC offset powers at different repetition rates.

Fig. 6.
Fig. 6.

The pulse-trains measured by (a) autocorrelator and (b) by DSO.

Fig. 7.
Fig. 7.

Autocorrelation traces with and without Fabry-Perot filter.

Fig. 8.
Fig. 8.

The pulsewidth of the FPLD mode-locked EDFL at different repetition frequencies.

Fig. 9.
Fig. 9.

The SSB phase noise spectra of the mode-locked pulses (solid line) and the RF frequency synthesizer (dashed line).

Fig. 10.
Fig. 10.

The SSB phase noise density (solid square) and related timing jitter (hollow circle) at different repetition frequencies.

Metrics