Abstract

An optical trapping system with a single-mode lensed fiber probe inserted at an angle is built; this system is simpler and more flexible than conventional optical tweezers. Two lasers, with 632.8- and 1550-nm wavelengths, are employed to trap and manipulate yeast cells and polystyrene microspheres. Nine yeast cells are manipulated to form a letter “T.” Finally, the manipulation performed with various inclination angles, particle materials, laser wavelengths, and laser powers is analyzed experimentally.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, �??History of optical trapping and manipulation of small-neutral particle, atom, and molecules,�?? IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
    [CrossRef]
  3. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, �??Demonstration of a fiber-optical light-force trap,�?? Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  4. E. R. Lyons and G. J. Sonek, �??Confinement and bistability in a tapered hemispherically lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586 (1995).
    [CrossRef]
  5. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, �??Self-organized array of regularly spaced microbeads in a fiber-optical trap,�?? J. Opt. Soc. Am. B 20, 1568-1574 (2003).
    [CrossRef]
  6. S. D. Collins, R. J. Baskin, and D. G. Howitt, �??Microinstrument gradient-force optical trap,�?? Appl. Opt. 38, 6068-6074 (1999).
    [CrossRef]
  7. K. Taguchi, H. Ueno, T. Hiramatsu, and M. Ikeda, �??Optical trapping of dielectric particle and biological cell using optical fibre,�?? Electron. Lett. 33, 413-414 (1997).
    [CrossRef]
  8. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Single laser beam fiber optic trap,�?? Opt. Quantum Electron. 33, 99-106 (2001).
    [CrossRef]
  9. K. Taguchi, H. Ueno, and M. Ikeda, �??Rotational manipulation of a yeast cell using optical fibers,�?? Electron. Lett. 33, 1249-1250 (1997).
    [CrossRef]
  10. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Levitation of a microscopic object using plural optical fibers,�?? Opt. Commun. 176, 43-47 (2000).
    [CrossRef]
  11. R. S. Taylor and C. Hnatovsky, �??Particle trapping in 3-D using a single fiber probe with an annular light distribution,�?? Opt. Express 11, 2775-2782 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775</a>.
    [CrossRef] [PubMed]
  12. R. S. Taylor and C. Hnatovsky, �??Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe,�?? Opt. Express 12, 916-928 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-916">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-916</a>.
    [CrossRef] [PubMed]
  13. W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, �??Laser trapping in cell biology,�?? IEEE QE 26, 2148-2156 (1990).
    [CrossRef]
  14. S. H. Xu, Y. M. Li, L. R. Lou, H. T. Chen, and Z. W. Sun, �??Steady patterns of microparticles formed by optical tweezers,�?? Jpn. J. Appl. Phys. 41, 166-168 (2002)
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. R. Lyons and G. J. Sonek, �??Confinement and bistability in a tapered hemispherically lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

Electron. Lett.

K. Taguchi, H. Ueno, and M. Ikeda, �??Rotational manipulation of a yeast cell using optical fibers,�?? Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

K. Taguchi, H. Ueno, T. Hiramatsu, and M. Ikeda, �??Optical trapping of dielectric particle and biological cell using optical fibre,�?? Electron. Lett. 33, 413-414 (1997).
[CrossRef]

IEEE J. Quantum Electron.

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, �??Laser trapping in cell biology,�?? IEEE QE 26, 2148-2156 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, �??History of optical trapping and manipulation of small-neutral particle, atom, and molecules,�?? IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. H. Xu, Y. M. Li, L. R. Lou, H. T. Chen, and Z. W. Sun, �??Steady patterns of microparticles formed by optical tweezers,�?? Jpn. J. Appl. Phys. 41, 166-168 (2002)
[CrossRef]

Opt Lett.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

Opt. Commun.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Levitation of a microscopic object using plural optical fibers,�?? Opt. Commun. 176, 43-47 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Single laser beam fiber optic trap,�?? Opt. Quantum Electron. 33, 99-106 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1 .
Fig.1 .

Optical forces acting on a particle

Fig.2 .
Fig.2 .

Experimental setup. (a) He-Ne laser is employed. (b) 1550-nm laser is employed.

Fig.3 .
Fig.3 .

Yeast cell A is always trapped by the probe, and untrapped yeast B moves with the chamber bottom. (a)–(g): The nanostage moves the sample chamber in sequence in directions -y→+y→-x→+x→-z→+z. (g)–(k): Then the micromanipulator moves the fiber probe in sequence in directions +y→-y→+x→-x (observed with a 100× objective).

Fig.4 .
Fig.4 .

Nine yeast cells form a letter “T” (observed with a 40× objective).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F x = F ax cos θ F tr sin θ

Metrics