Abstract

We report a novel system for time-resolved diffuse remission spectral measurements, based on short light continuum pulses generated in an index-guided crystal fiber, and a spectrometer-equipped streak camera. The system enables spectral recordings of absorption and reduced scattering coefficients of turbid media in the wavelength range 500–1200 nm with a spectral resolution of 5 nm and a temporal resolution of 30 ps. The optical properties are calculated by fitting the solution of the diffusion equation to the time-dispersion curve at each wavelength. Example measurements are presented from an apple, a finger and a pharmaceutical tablet.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Geladi, D. MacDougall, and H. Martens, “Linearization and scatter correction for near-infrared reflectance spectra of meat,” Appl. Spectrosc. 39, 491–500 (1985).
    [CrossRef]
  2. S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
    [CrossRef]
  3. V. Centner, J. Verdú-Andrés, B. Walczak, D. Jouan-Rimbaud, F. Despagne, L. Pasti, R. Poppi, D-L. Massart, and O. E. de Noord, “Comparison of multivariate calibration techniques applied to experimental NIR data sets,” Appl. Spectrosc. 54, 608–629 (2000).
    [CrossRef]
  4. I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
    [CrossRef] [PubMed]
  5. T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
    [CrossRef]
  6. O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
    [CrossRef] [PubMed]
  7. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  8. M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).
  9. S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).
  10. S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
    [CrossRef] [PubMed]
  11. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
    [CrossRef] [PubMed]
  12. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
    [CrossRef]
  13. J. R. Lakowicz and K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246 (1990).
    [CrossRef]
  14. J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).
  15. M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the detemination of the scanttering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [CrossRef] [PubMed]
  16. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
    [CrossRef] [PubMed]
  17. E. Gratton and J. Maier, “Frequency-domain measurements of photon migration in highly scattering media,” Medical Optical Tomography.534–544 (1996).
  18. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
    [CrossRef] [PubMed]
  19. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
    [CrossRef]
  20. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
    [CrossRef] [PubMed]
  21. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber optic probe for non-invasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
    [CrossRef]
  22. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27, 246–248 (2002).
    [CrossRef]
  23. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  24. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).
  25. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [CrossRef]
  26. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femotsecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [CrossRef] [PubMed]
  27. O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
    [PubMed]
  28. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
    [CrossRef]
  29. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  30. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
    [CrossRef]
  31. C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)
  32. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
    [CrossRef] [PubMed]
  33. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  34. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
    [CrossRef]
  35. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]
  36. C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
    [CrossRef]

2003 (2)

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (3)

2000 (4)

1999 (3)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

1998 (1)

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

1997 (2)

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

1994 (2)

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

1993 (1)

1992 (2)

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

J. R. Lakowicz and K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246 (1990).
[CrossRef]

1989 (1)

1985 (1)

1983 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Abrahamsson, C.

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Anderson, E. R.

Andersson-Engels, S.

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber optic probe for non-invasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

Antii, H.

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

Aruna, P.

Backman, V.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Berg, R.

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
[CrossRef] [PubMed]

Berger, A. J.

Berndt, K.

J. R. Lakowicz and K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246 (1990).
[CrossRef]

Berndt, K. W.

Berntsson, O.

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

Bevilacqua, F.

Birks, T. A.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Broeng, J.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

Burger, T.

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

Caps, R.

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

Centner, V.

Cerussi, A. E.

Chance, B.

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Cubeddu, R.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

D’Andrea, C.

Dalgaard, T.

Dam, J. S.

Danielsson, L. G.

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

de Noord, O. E.

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Despagne, F.

Dover, C.

Fabricius, P. E.

Fantini, S.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Feng, T.-C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

Filiaci, M. E.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

Fishkin, J.

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).

Folestad, S.

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

Fork, R. L.

Franceschini, M. A.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

Fricke, J.

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

Geladi, P.

Genty, G.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

E. Gratton and J. Maier, “Frequency-domain measurements of photon migration in highly scattering media,” Medical Optical Tomography.534–544 (1996).

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
[CrossRef] [PubMed]

Hefetz, Y.

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Hirlimann, C.

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Jacques, S. L.

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Jakubowski, D.

Jarlman, O.

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

Johansson, J.

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

Johnson, D.

Josefson, M.

Jouan-Rimbaud, D.

Kaivola, M.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Kuhn, J.

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

Lakowicz, J. R.

Lehtonen, M.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

Lindgren, F.

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

Ludvigsen, H.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

MacDougall, D.

Madsen, S. J.

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Maier, J.

E. Gratton and J. Maier, “Frequency-domain measurements of photon migration in highly scattering media,” Medical Optical Tomography.534–544 (1996).

Mantulin, W. W.

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).

Martens, H.

Massart, D-L.

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

Moulton, J. D.

M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the detemination of the scanttering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Muller, M. G.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Ohman, J.

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

Ortiz, C.

Park, Y. D.

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Pasti, L.

Patterson, M.

Patterson, M. S.

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).

Pedersen, C. B.

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Persson, A.

Pettersson, H.

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

Pifferi, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

Poppi, R.

Ranka, J. K.

Ruiz-Altisent, M.

Russell, P. S. J.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Sparen, A.

Sparén, A.

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

Stentz, A. J.

Sterenborg, H. J. C. M.

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

Svanberg, S.

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
[CrossRef] [PubMed]

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

Swartling, J.

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

Taroni, P.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Tomlinson, W. J.

Toronov, V.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

Tromberg, B. J.

Tsay, T.-T.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, “Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples,” Appl. Spectrosc. 55, 1368–1374 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Valero, C.

van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

van Veen, R. L. P.

vandeVen, M. J.

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).

Verdú-Andrés, J.

Verkruysse, W.

Walczak, B.

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the detemination of the scanttering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Windeler, R. S.

Wold, S.

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

Yen, R.

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Acta Radiol. (1)

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
[PubMed]

Anal. Chem. (1)

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, “Effective sample size in diffuse reflectance near-IR spectrometry,” Anal. Chem. 71, 617–623 (1999).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (1)

J. R. Lakowicz and K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246 (1990).
[CrossRef]

Chemom. Intell. Lab. Syst. (2)

S. Wold, H. Antii, F. Lindgren, and J. Ohman“Orthogonal signal correction of near-infrared spectra,” Chemom. Intell. Lab. Syst. 44, 175–185 (1998).
[CrossRef]

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, “Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets,” Chemom. Intell. Lab. Syst. 69, 3–12 (2003).
[CrossRef]

Gastroenterology. (1)

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology. 120, 1620–1629 (2001).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (1)

T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements,” J. Appl. Spectrosc. 51, 309–317 (1997).
[CrossRef]

J. Opt. Soc. Am. A. (1)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).
[CrossRef]

J. Photochem. Photobiol. B. (1)

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B. 16, 155–167 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Opt. Express. (2)

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49.
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express. 10, 1083–1098 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.
[CrossRef] [PubMed]

Opt. Lett. (5)

Optical Materials. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Optical Materials. 11, 143–151 (1999).
[CrossRef]

Phys. Med. Biol. (1)

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Other (6)

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. “New measuring technique”, Patent Application PCT WO 2002075286 (2002)

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomedical Optics. (to be published).

E. Gratton and J. Maier, “Frequency-domain measurements of photon migration in highly scattering media,” Medical Optical Tomography.534–544 (1996).

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of TissueB. Chance, ed. Proc. SPIE1431, 122–135 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, Proc. SPIE1205, 62–75 (1990).

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, “Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment,” in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE1431, 42–51 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical arrangement of the system. Three types of sample geometry were employed, a fiber-based probe in diffuse transmission or reflection, as well as a direct transmission of a slightly focused beam from the crystal fiber.

Fig. 2.
Fig. 2.

Detected light intensity without any sample as a function of wavelength Three settings of the spectrometer was employed to cover the entire range. The middle region was measured using the Ti:Sapphire laser only, without any crystal fiber.

Fig. 3.
Fig. 3.

A recorded data set is shown (upper left). Remitted light intensity is presented versus time along the horizontal axis and wavelength along the vertical axis. A spectral profile of the remitted light at a time gate around 150 ps is shown in the plot to the upper right, while the temporal dispersion of the detected light at 900 nm is illustrated in the lower left graph. In the latter plot, the instrumental response function (IRF) is also indicated (in red), together with the best obtainable fit (green curve). In the lower right plot, the optical properties evaluated from this image are shown as a function of wavelength.

Fig. 4.
Fig. 4.

Levenberg-Marquardt Minimization. The elliptical pattern is built up of equidistant iso-curves of the merit norm. The elliptical shape implies an apparent correlation between fitted parameter values, giving rise to certain limitations when trying to separate absorption from scattering.

Fig. 5.
Fig. 5.

Correlation plot for measured and estimated optical properties from five epoxy phantoms containing TiO2 particles as scattering material and ink toner as absorber.

Fig. 6.
Fig. 6.

Data evaluated from time-resolved diffuse (a) reflectance measurements on a green apple, and (b) transmission measurements through the tip of an index finger.

Fig. 7.
Fig. 7.

Data evaluated from transmission measurements on a pharmaceutical tablet.

Metrics