Abstract

We report a novel system for time-resolved diffuse remission spectral measurements, based on short light continuum pulses generated in an index-guided crystal fiber, and a spectrometer-equipped streak camera. The system enables spectral recordings of absorption and reduced scattering coefficients of turbid media in the wavelength range 500–1200 nm with a spectral resolution of 5 nm and a temporal resolution of 30 ps. The optical properties are calculated by fitting the solution of the diffusion equation to the time-dispersion curve at each wavelength. Example measurements are presented from an apple, a finger and a pharmaceutical tablet.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Geladi, D. MacDougall, and H. Martens, "Linearization and scatter correction for near-infrared reflectance spectra of meat," Appl. Spectrosc. 39, 491-500 (1985).
    [CrossRef]
  2. S. Wold, H. Antii, F. Lindgren, and J. Ohman, "Orthogonal signal correction of near-infrared spectra," Chemom. Intell. Lab. Syst. 44, 175-185 (1998).
    [CrossRef]
  3. V. Centner, J. Verdú-Andrés, B. Walczak, D. Jouan-Rimbaud, F. Despagne, L. Pasti, R. Poppi, D-L. Massart, and O. E. de Noord, "Comparison of multivariate calibration techniques applied to experimental NIR data sets," Appl. Spectrosc. 54, 608-629 (2000).
    [CrossRef]
  4. T. Burger, J. Kuhn, R. Caps, and J. Fricke, "Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements," J. Appl. Spectrosc. 51, 309-317 (1997).
    [CrossRef]
  5. O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, "Effective sample size in diffuse reflectance near-IR spectrometry," Anal. Chem. 71, 617-623 (1999).
    [CrossRef] [PubMed]
  6. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  7. M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, "Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry," in Photodynamic Therapy: Mechanisms II, Proc. SPIE 1205, 62-75 (1990).
  8. S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, "Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 42-51 (1991).
  9. S. Andersson-Engels, R. Berg, and S. Svanberg, "Effects of optical constants on time-gated transillumination of tissue and tissue-like media," J. Photochem. Photobiol. B. 16, 155-167 (1992).
    [CrossRef] [PubMed]
  10. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, "Multispectral tissue characterization with time-resolved detection of diffusely scattered white light," Opt. Lett. 18, 1697-1699 (1993).
    [CrossRef] [PubMed]
  11. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
    [CrossRef]
  12. J. R. Lakowicz and K. Berndt, "Frequency-domain measurements of photon migration in tissues," Chem. Phys. Lett. 166, 246 (1990).
    [CrossRef]
  13. J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, "Diffusion of intensity modulated nearinfrared light in turbid media," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 122-135 (1991).
  14. M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the detemination of the scanttering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991).
    [CrossRef] [PubMed]
  15. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, "Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy," Opt. Lett. 19, 1934-1936 (1994).
    [CrossRef] [PubMed]
  16. E. Gratton and J. Maier, "Frequency-domain measurements of photon migration in highly scattering media," Medical Optical Tomography. 534-544 (1996).
  17. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express. 6, 49-57 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49</a>
    [CrossRef]
  18. T. J. Farrell, B. C. Wilson, and M. S. Patterson, "The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
    [CrossRef] [PubMed]
  19. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber optic probe for non-invasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001).
    [CrossRef]
  20. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002).
    [CrossRef]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
    [CrossRef]
  22. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomedical Optics. (to be published).
  23. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  24. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, "Femotsecond white-light continuum pulses," Opt. Lett. 8, 1-3 (1983).
    [CrossRef] [PubMed]
  25. O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, "Time-resolved white light transillumination for optical imaging," Acta Radiol. 38, 185-189 (1997).
    [PubMed]
  26. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, "Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets," Appl. Spectrosc. 56, 725-731 (2002).
    [CrossRef]
  27. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  28. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, "Photonic crystals as optical fibres - physics and applications," Optical Materials. 11, 143-151 (1999).
    [CrossRef]
  29. C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. "New measuring technique", Patent Application PCT WO 2002075286 (2002)
  30. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express. 10, 1083-1098 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>
    [CrossRef] [PubMed]
  31. J. Swartling, J. S. Dam, and S. Andersson-Engels, "Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties," Appl. Opt. 42, 4612-4620 (2003).
    [CrossRef] [PubMed]
  32. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A. 11, 2727-2741 (1994).
    [CrossRef]
  33. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625-1633 (1996).
    [CrossRef] [PubMed]
  34. C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, "Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets," Chemom. Intell. Lab. Syst. 69, 3-12 (2003).
    [CrossRef]
  35. I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology. 120, 1620-1629 (2001).
  36. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).

Acta Radiol. (1)

O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, "Time-resolved white light transillumination for optical imaging," Acta Radiol. 38, 185-189 (1997).
[PubMed]

Anal. Chem. (1)

O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, "Effective sample size in diffuse reflectance near-IR spectrometry," Anal. Chem. 71, 617-623 (1999).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (1)

J. R. Lakowicz and K. Berndt, "Frequency-domain measurements of photon migration in tissues," Chem. Phys. Lett. 166, 246 (1990).
[CrossRef]

Chemom. Intell. Lab. Syst. (2)

S. Wold, H. Antii, F. Lindgren, and J. Ohman, "Orthogonal signal correction of near-infrared spectra," Chemom. Intell. Lab. Syst. 44, 175-185 (1998).
[CrossRef]

C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, "Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets," Chemom. Intell. Lab. Syst. 69, 3-12 (2003).
[CrossRef]

Gastroenterology (1)

I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology. 120, 1620-1629 (2001).

J. Appl. Spectrosc. (1)

T. Burger, J. Kuhn, R. Caps, and J. Fricke, "Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements," J. Appl. Spectrosc. 51, 309-317 (1997).
[CrossRef]

J. Biomedical Optics. (1)

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomedical Optics. (to be published).

J. Opt. Soc. Am. A. (1)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A. 11, 2727-2741 (1994).
[CrossRef]

J. Photochem. Photobiol. B. (1)

S. Andersson-Engels, R. Berg, and S. Svanberg, "Effects of optical constants on time-gated transillumination of tissue and tissue-like media," J. Photochem. Photobiol. B. 16, 155-167 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625-1633 (1996).
[CrossRef] [PubMed]

Medical Optical Tomography (1)

E. Gratton and J. Maier, "Frequency-domain measurements of photon migration in highly scattering media," Medical Optical Tomography. 534-544 (1996).

Opt. Express. (1)

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express. 10, 1083-1098 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Optical Materials (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, "Photonic crystals as optical fibres - physics and applications," Optical Materials. 11, 143-151 (1999).
[CrossRef]

Phys. Med. Biol. (1)

T. J. Farrell, B. C. Wilson, and M. S. Patterson, "The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Proc. SPIE (3)

J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, "Diffusion of intensity modulated nearinfrared light in turbid media," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 122-135 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, "Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry," in Photodynamic Therapy: Mechanisms II, Proc. SPIE 1205, 62-75 (1990).

S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, "Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 42-51 (1991).

Other (1)

C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. "New measuring technique", Patent Application PCT WO 2002075286 (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical arrangement of the system. Three types of sample geometry were employed, a fiber-based probe in diffuse transmission or reflection, as well as a direct transmission of a slightly focused beam from the crystal fiber.

Fig. 2.
Fig. 2.

Detected light intensity without any sample as a function of wavelength Three settings of the spectrometer was employed to cover the entire range. The middle region was measured using the Ti:Sapphire laser only, without any crystal fiber.

Fig. 3.
Fig. 3.

A recorded data set is shown (upper left). Remitted light intensity is presented versus time along the horizontal axis and wavelength along the vertical axis. A spectral profile of the remitted light at a time gate around 150 ps is shown in the plot to the upper right, while the temporal dispersion of the detected light at 900 nm is illustrated in the lower left graph. In the latter plot, the instrumental response function (IRF) is also indicated (in red), together with the best obtainable fit (green curve). In the lower right plot, the optical properties evaluated from this image are shown as a function of wavelength.

Fig. 4.
Fig. 4.

Levenberg-Marquardt Minimization. The elliptical pattern is built up of equidistant iso-curves of the merit norm. The elliptical shape implies an apparent correlation between fitted parameter values, giving rise to certain limitations when trying to separate absorption from scattering.

Fig. 5.
Fig. 5.

Correlation plot for measured and estimated optical properties from five epoxy phantoms containing TiO2 particles as scattering material and ink toner as absorber.

Fig. 6.
Fig. 6.

Data evaluated from time-resolved diffuse (a) reflectance measurements on a green apple, and (b) transmission measurements through the tip of an index finger.

Fig. 7.
Fig. 7.

Data evaluated from transmission measurements on a pharmaceutical tablet.

Metrics