Abstract

First demonstration of cross phase modulation based interferometric switch is presented in silicon on insulator waveguides. By using Mach-Zehnder interferometric configuration we experimentally demonstrate switching of CW signal ~25 nm away from the pump laser. We present the effect of free carrier accumulation on switching. Additionally, we theoretically analyze the transient effects and degradations due to free carrier absorption, free carrier refraction and two photon absorption effects. Results suggest that at low peak power levels the system is governed by Kerr nonlinearities. As the input power levels increase the free carrier effects becomes dominant. Effect of free carrier generation on continuum generation and power transfer also theoretically analyzed and spectral broadening factor for high input power levels is estimated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313(2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
    [Crossref] [PubMed]
  2. J.J. Wayne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295–1303 (1969)
    [Crossref]
  3. Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001)
  4. A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
    [Crossref]
  5. A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
    [Crossref]
  6. Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
    [Crossref]
  7. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided wave components for λ=1.3 and 1.6µm,” IEEE J. Quantum Electron. 22, 873–879 (1986)
    [Crossref]
  8. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
    [Crossref]
  9. C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452, (1995)
    [Crossref]
  10. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
    [Crossref]
  11. G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
    [Crossref]
  12. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
    [Crossref] [PubMed]
  13. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in Silicon waveguides,” Opt. Express 11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
    [Crossref] [PubMed]
  14. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical process in silicon waveguides,” Opt. Express 12, 149–160 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149
    [Crossref] [PubMed]
  15. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase matching and nonlinear optical process in silicon waveguides,” Proceedings of IPR 2004, Paper IThE3, (2004)
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)
  17. T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
    [Crossref]
  18. T.K. Liang and H.K. Tsang “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84 (15) 2745–2747 (2004).
    [Crossref]
  19. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali “influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
    [Crossref] [PubMed]
  20. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004), http://www. opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611
    [Crossref] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
    [Crossref]
  22. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
    [Crossref]
  23. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829
    [Crossref] [PubMed]
  24. J.L. Freeouf and S.T. LiuProceedings of IEEE International SOI Conference.Tucson, AZ, 74–75 (1995).
  25. M.A. Mendicino Comparison of properties of available SOI materials. Properties of Crystalline Silicon. Ed. Hull and Robert. INSPEC, IEE. 992–1001 (1998).
  26. T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
    [Crossref]
  27. K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
    [Crossref]
  28. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987)
    [Crossref]
  29. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995)

2004 (6)

2003 (4)

T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in Silicon waveguides,” Opt. Express 11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

2002 (3)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313(2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[Crossref] [PubMed]

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

1999 (1)

Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
[Crossref]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

1996 (1)

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

1995 (2)

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452, (1995)
[Crossref]

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

1994 (1)

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

1991 (1)

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
[Crossref]

1989 (1)

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987)
[Crossref]

1986 (1)

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided wave components for λ=1.3 and 1.6µm,” IEEE J. Quantum Electron. 22, 873–879 (1986)
[Crossref]

1969 (1)

J.J. Wayne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295–1303 (1969)
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995)

Arai, E.

T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
[Crossref]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987)
[Crossref]

Boyraz, O.

Cardona, Manuel

Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001)

Claps, R.

Cowan, A. R.

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Dadap, J. I.

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

Darwish, A.M.

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Day, I.E.

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

DeLong, K. W.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

Dimitropoulos, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
[Crossref]

Donnelly, J.P.

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

Drake, J.

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Espinola, R. L.

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

Freeouf, J.L.

J.L. Freeouf and S.T. LiuProceedings of IEEE International SOI Conference.Tucson, AZ, 74–75 (1995).

Gabel, A.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

Gao, Y.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
[Crossref]

Groves, S.H.

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

Halbout, J. M.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
[Crossref]

Han, Y.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Hull,

M.A. Mendicino Comparison of properties of available SOI materials. Properties of Crystalline Silicon. Ed. Hull and Robert. INSPEC, IEE. 992–1001 (1998).

Indukuri, T.

Iodice, M.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Ippen, E.P.

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

Ironside, C.N.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Ishimura, M.

T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
[Crossref]

Islam, M.N.

Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
[Crossref]

Jalali, B.

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829
[Crossref] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical process in silicon waveguides,” Opt. Express 12, 149–160 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149
[Crossref] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali “influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in Silicon waveguides,” Opt. Express 11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313(2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[Crossref] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase matching and nonlinear optical process in silicon waveguides,” Proceedings of IPR 2004, Paper IThE3, (2004)

Kao, Y.-H.

Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
[Crossref]

Knights, A.P.

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Kuwuyama, T.

T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
[Crossref]

Lee, H.Q.

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

Li, G. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Liang, T.K.

T.K. Liang and H.K. Tsang “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84 (15) 2745–2747 (2004).
[Crossref]

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Liu, E. K.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Liu, S.T.

J.L. Freeouf and S.T. LiuProceedings of IEEE International SOI Conference.Tucson, AZ, 74–75 (1995).

Liu, X. D.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided wave components for λ=1.3 and 1.6µm,” IEEE J. Quantum Electron. 22, 873–879 (1986)
[Crossref]

May, P. G.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
[Crossref]

McNab, S. J.

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

Mendicino, M.A.

M.A. Mendicino Comparison of properties of available SOI materials. Properties of Crystalline Silicon. Ed. Hull and Robert. INSPEC, IEE. 992–1001 (1998).

Osgood, R. M.

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

Osgood, R.M.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
[Crossref]

Raghunathan, V.

Reed, G. T.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452, (1995)
[Crossref]

Rieger, G. W.

Robert,

M.A. Mendicino Comparison of properties of available SOI materials. Properties of Crystalline Silicon. Ed. Hull and Robert. INSPEC, IEE. 992–1001 (1998).

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Scelsi, G.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Seaton, C. T.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987)
[Crossref]

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided wave components for λ=1.3 and 1.6µm,” IEEE J. Quantum Electron. 22, 873–879 (1986)
[Crossref]

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Stegeman, G. I.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

Stegeman, G.I.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Tang, C. K.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452, (1995)
[Crossref]

Treyz, G. V.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
[Crossref]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Tsang, H.K.

T.K. Liang and H.K. Tsang “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84 (15) 2745–2747 (2004).
[Crossref]

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Villeneuve, A.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Vlasov, Y. A.

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

Wayne, J.J.

J.J. Wayne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295–1303 (1969)
[Crossref]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

Xia, T.J.

Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
[Crossref]

Yang, C.C.

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

Young, J. F.

Yu, Peter Y.

Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001)

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Zhao, C. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Appl. Phys. Lett. (8)

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, and S.H. Groves “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69 (6) 737–739 (1996).
[Crossref]

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991)
[Crossref]

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

T.K. Liang and H.K. Tsang “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84 (15) 2745–2747 (2004).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom waveguides,” Appl. Phys. Lett. 82, 2954–2956 (2003)
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002)
[Crossref]

T. Kuwuyama, M. Ishimura, and E. AraiInterface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field.Appl. Phys. Lett. 83, 928–930 (2003).
[Crossref]

Electron. Lett. (1)

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452, (1995)
[Crossref]

IEEE J. Quant. Electron. (1)

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, and R.M. Osgood “Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,” IEEE J. Quant. Electron. 30 (5) 1172–1175 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided wave components for λ=1.3 and 1.6µm,” IEEE J. Quantum Electron. 22, 873–879 (1986)
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987)
[Crossref]

J. Appl. Phys. (1)

Y.-H. Kao, T.J. Xia, and M.N. Islam“Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current,” J. Appl. Phys. 86 (9) 4740–4747 (1999).
[Crossref]

J. Lightwave Technol. (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Journal of Opt. Soc. Am. B (1)

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” Journal of Opt. Soc. Am. B 6, 1306–1313 (1989)
[Crossref]

Opt. Express (7)

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313(2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[Crossref] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali “influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[Crossref] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004), http://www. opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in Silicon waveguides,” Opt. Express 11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical process in silicon waveguides,” Opt. Express 12, 149–160 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149
[Crossref] [PubMed]

Phys. Rev. (1)

J.J. Wayne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295–1303 (1969)
[Crossref]

Other (6)

Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001)

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase matching and nonlinear optical process in silicon waveguides,” Proceedings of IPR 2004, Paper IThE3, (2004)

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in a silicon wire waveguide,” Proceedings of IPR 2004, Paper IWA4, (2004)

J.L. Freeouf and S.T. LiuProceedings of IEEE International SOI Conference.Tucson, AZ, 74–75 (1995).

M.A. Mendicino Comparison of properties of available SOI materials. Properties of Crystalline Silicon. Ed. Hull and Robert. INSPEC, IEE. 992–1001 (1998).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of XPM based silicon switch. Mach Zehnder interferometer is used for switching. XPM induced phase shift causes switching of CW signal to the output port.

Fig. 2.
Fig. 2.

Output results of XPM based silicon switch. a) Residual pump pulse and switched CW signal when probe signal is present. b) Net switching results. Exponential decay indicates free carrier refraction.

Fig. 4.
Fig. 4.

Total amount of phase shift for two different free carrier lifetime values induced by a) the index change due to free carrier accumulation and b) the Kerr nonlinearity. T=pulse period and τeff=free carrier life time.

Fig. 5.
Fig. 5.

Total amount of phase shift induced by the index change due to free carrier accumulation and the Kerr nonlinearity in the absence of free carrier accumulation. 180° phase shift can be obtained by Kerr nonlinearity at moderate power levels and with minimal free carrier effect.

Fig. 6.
Fig. 6.

Simulated switching behavior in silicon. a) full scale representation b) 30ps time window of switched signal. Perfect switching profile is obtained at 40W peak power levels.

Fig. 7.
Fig. 7.

a) Qualitative depiction of free carrier transients in the time scale of optical pulse. The free carrier density follows the integral of pulse shape. b) Simulated results of spectral broadening factor.

Fig. 8.
Fig. 8.

Spectrum generated at ~25 GW/cm2. SPM generates symmetric spectral broadening and free carrier refraction generate blue shifted spectrum.

Fig. 9.
Fig. 9.

Power transfer function in the presence of pulse steepening. Free carrier absorption causes higher attenuation at the trailing edge of the pulse and average throughput reduces On the other hand peak power level shows saturated behavior due to TPA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t , z ) z = 1 2 ( α + Δ α + α TPA ) E ( t , z ) i g γ E p ( t , z ) 2 E + i 2 π λ Δ n E ( t , z )
Δ α = e 3 λ 2 4 π 2 c 3 ε 0 n [ Δ N e m ce · μ e + Δ N h m ch · μ h ]
Δ n = e 2 λ 2 8 π 2 c 2 ε 0 n [ Δ N e m ce + Δ N h m ch ]
N ( t , z ) t = N ( t , z ) τ eff + β I p ( t ) 2 2 ω
α TPA = 4 n 480 π A eff 2 β I p ( t , z )

Metrics