Abstract

First demonstration of cross phase modulation based interferometric switch is presented in silicon on insulator waveguides. By using Mach-Zehnder interferometric configuration we experimentally demonstrate switching of CW signal ~25 nm away from the pump laser. We present the effect of free carrier accumulation on switching. Additionally, we theoretically analyze the transient effects and degradations due to free carrier absorption, free carrier refraction and two photon absorption effects. Results suggest that at low peak power levels the system is governed by Kerr nonlinearities. As the input power levels increase the free carrier effects becomes dominant. Effect of free carrier generation on continuum generation and power transfer also theoretically analyzed and spectral broadening factor for high input power levels is estimated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express 10, 1305-1313 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305.
    [CrossRef] [PubMed]
  2. J. J. Wayne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
    [CrossRef]
  3. Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001).
  4. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, R. M. Osgood; "Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap," IEEE J. Quant. Electron. 30 (5) 1172-1175 (1994).
    [CrossRef]
  5. A. M. Darwish, E. P. Ippen, H. Q. Lee, J. P. Donnelly, S. H. Groves; "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69 (6) 737-739 (1996).
    [CrossRef]
  6. Y.-H. Kao, T. J. Xia, M. N. Islam; "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86 (9) 4740-4747 (1999).
    [CrossRef]
  7. R. A. Soref, and J. P. Lorenzo, "All-silicon active and passive guided wave components for λ=1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986)
    [CrossRef]
  8. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
    [CrossRef]
  9. C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452, (1995).
    [CrossRef]
  10. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m," Appl. Phys. Lett. 67, 2448-2449 (1995).
    [CrossRef]
  11. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]
  12. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731.
    [CrossRef] [PubMed]
  13. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-Stokes Raman conversion in Silicon waveguides," Opt. Express 11, 2862-2872 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862.
    [CrossRef] [PubMed]
  14. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase-matching and nonlinear optical process in silicon waveguides," Opt. Express 12, 149-160 (2004) http://www.opticsexpress.org/abstract.cfm?URI= OPEX-12-1-149.
    [CrossRef] [PubMed]
  15. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase matching and nonlinear optical process in silicon waveguides," Proceedings of IPR 2004, Paper IThE3, (2004).
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, Y. A. Vlasov, "Spontaneous Raman scattering in a silicon wire waveguide," Proceedings of IPR 2004, Paper IWA4, (2004)
  17. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
    [CrossRef]
  18. T. K. Liang, H. K. Tsang; "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84 (15) 2745-2747 (2004).
    [CrossRef]
  19. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774.
    [CrossRef] [PubMed]
  20. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611.
    [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom waveguides," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  22. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength," Appl. Phys. Lett. 80, 416-418 (2002)
    [CrossRef]
  23. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829.
    [CrossRef] [PubMed]
  24. Freeouf, J. L., Liu, S. T. Proceedings of IEEE International SOI Conference, Tucson, AZ, 74-75 (1995).
  25. Mendicino, M. A., Comparison of properties of available SOI materials. Properties of Crystalline Silicon, Ed. Hull, Robert. INSPEC, IEE. 992-1001 (1998).
  26. Kuwuyama, T., Ishimura, M., Arai, E., "Interface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field," Appl. Phys. Lett. 83, 928-930 (2003).
    [CrossRef]
  27. K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, "Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses," J. Opt. Soc. Am. B 6, 1306-1313 (1989).
    [CrossRef]
  28. R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987)
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

Appl. Phys. Lett. (8)

A. M. Darwish, E. P. Ippen, H. Q. Lee, J. P. Donnelly, S. H. Groves; "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69 (6) 737-739 (1996).
[CrossRef]

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m," Appl. Phys. Lett. 67, 2448-2449 (1995).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

T. K. Liang, H. K. Tsang; "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84 (15) 2745-2747 (2004).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom waveguides," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength," Appl. Phys. Lett. 80, 416-418 (2002)
[CrossRef]

Kuwuyama, T., Ishimura, M., Arai, E., "Interface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field," Appl. Phys. Lett. 83, 928-930 (2003).
[CrossRef]

Electron. Lett. (1)

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452, (1995).
[CrossRef]

IEEE J. Quant. Electron. (1)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, R. M. Osgood; "Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap," IEEE J. Quant. Electron. 30 (5) 1172-1175 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref, and J. P. Lorenzo, "All-silicon active and passive guided wave components for λ=1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986)
[CrossRef]

R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987)
[CrossRef]

J. Appl. Phys. (1)

Y.-H. Kao, T. J. Xia, M. N. Islam; "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86 (9) 4740-4747 (1999).
[CrossRef]

J. Lightwave Technol. (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829.
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express 10, 1305-1313 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305.
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774.
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611.
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731.
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-Stokes Raman conversion in Silicon waveguides," Opt. Express 11, 2862-2872 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862.
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase-matching and nonlinear optical process in silicon waveguides," Opt. Express 12, 149-160 (2004) http://www.opticsexpress.org/abstract.cfm?URI= OPEX-12-1-149.
[CrossRef] [PubMed]

Phys. Rev. (1)

J. J. Wayne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
[CrossRef]

Proceedings of IPR 2004 (2)

D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase matching and nonlinear optical process in silicon waveguides," Proceedings of IPR 2004, Paper IThE3, (2004).

J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, Y. A. Vlasov, "Spontaneous Raman scattering in a silicon wire waveguide," Proceedings of IPR 2004, Paper IWA4, (2004)

S. T. Proceedings of IEEE International (1)

Freeouf, J. L., Liu, S. T. Proceedings of IEEE International SOI Conference, Tucson, AZ, 74-75 (1995).

Other (3)

Mendicino, M. A., Comparison of properties of available SOI materials. Properties of Crystalline Silicon, Ed. Hull, Robert. INSPEC, IEE. 992-1001 (1998).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of XPM based silicon switch. Mach Zehnder interferometer is used for switching. XPM induced phase shift causes switching of CW signal to the output port.

Fig. 2.
Fig. 2.

Output results of XPM based silicon switch. a) Residual pump pulse and switched CW signal when probe signal is present. b) Net switching results. Exponential decay indicates free carrier refraction.

Fig. 4.
Fig. 4.

Total amount of phase shift for two different free carrier lifetime values induced by a) the index change due to free carrier accumulation and b) the Kerr nonlinearity. T=pulse period and τeff=free carrier life time.

Fig. 5.
Fig. 5.

Total amount of phase shift induced by the index change due to free carrier accumulation and the Kerr nonlinearity in the absence of free carrier accumulation. 180° phase shift can be obtained by Kerr nonlinearity at moderate power levels and with minimal free carrier effect.

Fig. 6.
Fig. 6.

Simulated switching behavior in silicon. a) full scale representation b) 30ps time window of switched signal. Perfect switching profile is obtained at 40W peak power levels.

Fig. 7.
Fig. 7.

a) Qualitative depiction of free carrier transients in the time scale of optical pulse. The free carrier density follows the integral of pulse shape. b) Simulated results of spectral broadening factor.

Fig. 8.
Fig. 8.

Spectrum generated at ~25 GW/cm2. SPM generates symmetric spectral broadening and free carrier refraction generate blue shifted spectrum.

Fig. 9.
Fig. 9.

Power transfer function in the presence of pulse steepening. Free carrier absorption causes higher attenuation at the trailing edge of the pulse and average throughput reduces On the other hand peak power level shows saturated behavior due to TPA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t , z ) z = 1 2 ( α + Δ α + α TPA ) E ( t , z ) i g γ E p ( t , z ) 2 E + i 2 π λ Δ n E ( t , z )
Δ α = e 3 λ 2 4 π 2 c 3 ε 0 n [ Δ N e m ce · μ e + Δ N h m ch · μ h ]
Δ n = e 2 λ 2 8 π 2 c 2 ε 0 n [ Δ N e m ce + Δ N h m ch ]
N ( t , z ) t = N ( t , z ) τ eff + β I p ( t ) 2 2 ω
α TPA = 4 n 480 π A eff 2 β I p ( t , z )

Metrics