Abstract

In this paper, the experiment on parallel correlated recognition of 2030 human faces in Fe:LiNbO3 crystal is detailedly presented, a very clear correlation spots array was achieved and the recognition accuracy is better than 95%. According to the experiment, it is proved that speckle modulation on the object beam of volume holographic correlators can well suppress the crosstalk, so that the multiplexing spacing is markedly reduced and the channel density is increased 10 times compared with the traditional holographic correlators without speckle modulation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, �??Content-addressable data storage by use of volume holograms,�?? Appl. Opt. 38, 6779-6784(1999).
    [CrossRef]
  2. S. H. Lee, S. Y. Yi and E. S. Kim, �??Fingerprint Identification by use of a Volume Holographic Optical Correlator,�?? in Optical Pattern Recognition X, Orlando, Florida, April, Proc. SPIE 3715, 321-325 (1999).
  3. T. H. Chao, H. Zhou and G. Reyes, �??Compact 512�?512 Grayscale Optical Correlator�??, in Optical Pattern Recognition XIII; D. P. Casasent, T. H. Chao, Eds., Proc. SPIE 4734, 9-12 (2002).
  4. C. Gu, H. Fu, and J. R. Lien, �??Correlation patterns and cross-talk noise in volume holographic optical correlators,�?? J. Opt. Soc. Am. A 12, 861-868 (1995).
    [CrossRef]
  5. F. Wenyi, Y. Yingbai, J. Guofan, W. Minxian, H. Qingsheng, �??Volume holographic wavelet correlation processor,�?? Opt. Eng. 39, 2444-2450 (2000).
    [CrossRef]
  6. Ouyang Chuan, Cao Liangcai, He Qingsheng, Liao Yi, Wu Minxian, Jin Guofan, �??Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,�?? Opt. Lett. 28, 1972-1974 (2003).
    [CrossRef]
  7. J. Goodman, �??Statistical properties of laser speckle patterns,�?? in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9�??76.
    [CrossRef]
  8. Qingsheng He, Guodong Liu, Xiaochun Li, Jiangang Wang, Minxian Wu, and Guofan Jin, �??Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,�?? Appl. Opt. 41, 4104-4107 (2002).
    [CrossRef] [PubMed]
  9. F. H. Mok, M. C. Tackitt, and D. Psaltis, �??Storage of 500 high-resolution holograms in a LiNbO3 crystal,�?? Opt. Lett. 16, 605-607 (1991).
    [CrossRef] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

F. Wenyi, Y. Yingbai, J. Guofan, W. Minxian, H. Qingsheng, �??Volume holographic wavelet correlation processor,�?? Opt. Eng. 39, 2444-2450 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

S. H. Lee, S. Y. Yi and E. S. Kim, �??Fingerprint Identification by use of a Volume Holographic Optical Correlator,�?? in Optical Pattern Recognition X, Orlando, Florida, April, Proc. SPIE 3715, 321-325 (1999).

T. H. Chao, H. Zhou and G. Reyes, �??Compact 512�?512 Grayscale Optical Correlator�??, in Optical Pattern Recognition XIII; D. P. Casasent, T. H. Chao, Eds., Proc. SPIE 4734, 9-12 (2002).

Other (1)

J. Goodman, �??Statistical properties of laser speckle patterns,�?? in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9�??76.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The correlation intensity along the vertical direction with different sizes of the speckle grain.(from 1×1 to 512×512 pixels)

Fig. 2.
Fig. 2.

Experimental setup for the volume holographic correlators with speckle modulation. The holographic diffuser is put in front of the spatial light modulator (SLM size: 1024×768, pixel size: 26×26µm2), and it is illuminated by a collimated plane wave; the crystal is located at the Fourier plane of the SLM; the translating stage can change the incident angle of the reference beam along the horizontal and the vertical directions to implement multiplexing; the size of this system is: 400×400×150 mm3.

Fig. 3.
Fig. 3.

Autocorrelation pattern under the same experiment condition: (a) without speckle modulation (b) with speckle modulation

Fig. 4.
Fig. 4.

Experimental interpretation: (a) the correlation peak along the vertical direction without speckle modulation; (b) the corresponding result with speckle modulation; (c)(d) the same interpretation along the horizontal direction.

Fig. 5.
Fig. 5.

Pretreatment of the human face. (a) original face pattern; (b) the binary edge character extracted with wavelet transform.

Fig. 6.
Fig. 6.

Correlation spots array read out by a “white” image (a)without speckle modulation; (b) with speckle modulation

Fig. 7.
Fig. 7.

(a) The original time schedule curve; (b) The amended time schedule curve.

Fig. 8.
Fig. 8.

(a) The correlation spots array of the 2030 human faces; (b) Numerical statement of diffraction efficiency of the 2030 correlation spots array in Fig. 8(a).

Fig. 9.
Fig. 9.

Experimental result for the correlated recognition of the 1353th page and the corresponding numerical statement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g ( x 0 , y c ) m = M M d x 0 d y 0 f ( x 0 , y 0 ) f m * ( x 0 + ξ , y 0 + η )
× < a ( x 0 , y 0 ) a * ( x 0 + ξ , y 0 + η ) >
× t sin c { t 2 π [ k mz k dz + π λ ξ ( 2 x 0 + ξ ) + η ( 2 y 0 + η ) f 2 ] } .
Δ n N τ e τ r Δ n sat N , m = 1 N Δ n m τ e τ r Δ n sat .

Metrics