Abstract

At present, optical coherence tomography systems have a limited imaging depth or axial scan range, making diagnosis of large diameter arterial vessels and hollow organs difficult. Adaptive ranging is a feedback technique where image data is utilized to adjust the coherence gate offset and range. In this paper, we demonstrate an adaptive optical coherence tomography system with a 7.0 mm range. By matching the imaging depth to the approximately 1.5 mm penetration depth in tissue, a 3 dB sensitivity improvement over conventional imaging systems with a 3.0 mm imaging depth was realized.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. C. Strom, B. Sander, N. Larsen, M. Larsen, H.Lund-Andersen, �??Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography,�?? Invest. Ophthalmol. Vis. Sci. 43, 241-245 (2002).
    [PubMed]
  3. A.M. Coppe, G. Ripandelli, �??Optical coherence tomography in the evaluation of vitreoretinal disorders of the macula in highly myopic eyes,�?? Semin. Ophthalmol. 2, 85-88(2003).
    [CrossRef]
  4. E. A. Swanson, et al., �??In vivo retinal imaging by optical coherence tomography,�?? Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, �??Subsurface imaging of living skin with optical coherence microscopy,�?? Dermatology 191, 93-98 (1995).
    [CrossRef] [PubMed]
  6. B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, �??High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,�?? Gastrointest. Endosc. 51, 464-474 (2000).
    [CrossRef]
  7. G. J. Tearney, M. E. Brezinsky, S. A. Bopart, et al., �??Images in cardiovascular medicine: catheter based optical imaging of a human coronary artery,�?? Circulation 94, 3013 (1996).
    [CrossRef] [PubMed]
  8. C. Pitris, A. Goodman, S. A. Bopart, J. J. Libus, J. G. Fujimoto, M. E. Brezinski, �??High-resolution imaging of gynecologic neoplasms using optical coherence tomography,�?? Obstet. Gynecol. 93, 135-139 (1999).
    [PubMed]
  9. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, G. J. Tearney, �??Characterization of human atherosclerosis by optical coherence tomography,�?? Circulation 106, 1640-1645 (2002).
    [CrossRef] [PubMed]
  10. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 107, 113-119 (2003).
    [CrossRef] [PubMed]
  11. J. M. Poneros, G. J. Tearney, B. E. Bouma, G. Y. Lauwers, N. S. Nishioka, �??Diagnosis of dysplasia in Barrett�??s esophagus using optical coherence tomography,�?? In: Digestive Disease Week, San Francisco, CA. American Gastroenterological Association, AB113 (2001).
  12. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, G. J. Tearney, �??Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography,�?? J. Am. College Cardiology 39, 604-609 (2002).
    [CrossRef] [PubMed]
  13. A. F. Fercher, W. Drexler, C.K. Hitzenberger,and T. Lasser, �??Optical Coherence tomography-principles and applications,�?? Rep. Progr. Phys. 66, 239-303 (2003).
    [CrossRef]
  14. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, Jr., �??Optical coherence tomography and microscopy in gastrointestinal tissues,�?? IEEE J. of Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  15. M. V. Sivak, Jr., K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, �??High-resolution endoscopic imaging of the GI tract using optical coherence tomography,�?? Gastrointestinal Endoscopy 51, 474-479 (2000).
    [CrossRef] [PubMed]
  16. J. Kauppinen, J. Partanen, Fourier Transforms in Spectroscopy, ed.(Wiley-VCH, March 2001).
    [CrossRef]
  17. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, �??High-speed phase- and group-delay scanning with a gratingbased phase control delay line,�?? Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  18. B. E. Bouma, G. J. Tearney, �??Power efficient nonreciprocical interferometer and linear scanning fiberoptic catheter for optical coherence tomography,�?? Opt. Lett. 24, 531-533 (1999).
    [CrossRef]
  19. O. R. Guerra, W. R. Janowitz, A. S. Agatston, L. L. Mantelle, M. Viamonte, Jr., �??Coronary artery diameter and coronary risk factors: a study with ultrafast computed tomography,�?? Am. Heart J. 126, 600-606 (1993).
    [CrossRef] [PubMed]
  20. B. Cense, T. C. Chen, B.H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,�?? J. Biomed. Opt. 9, 121-125 (2004).
    [CrossRef] [PubMed]
  21. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, �??Real-time multi-functional optical coherence tomography,�?? Opt. Express 11, 782-93 (2003).
    [CrossRef] [PubMed]
  22. J.M. Schmitt, S.L. Lee, K.M. Yung, �??An optical coherence microscope with enhanced power in thick tissue,�?? Opt. Commun. 142, 203-207 (1997).
    [CrossRef]
  23. F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, �??Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541-553(1999).
  24. B.Qi, A.P. Himmer, L.M. Gordon, X.D. V. Yang, L.D. Dickensheets, I. A. Vitkin, �??Dynamic focus control in a high-speed optical coherence tomography based on a micromechanical mirror,�?? Opt. Commun. 232, 123-128(2004).
    [CrossRef]

Am. Heart J.

O. R. Guerra, W. R. Janowitz, A. S. Agatston, L. L. Mantelle, M. Viamonte, Jr., �??Coronary artery diameter and coronary risk factors: a study with ultrafast computed tomography,�?? Am. Heart J. 126, 600-606 (1993).
[CrossRef] [PubMed]

Circulation

G. J. Tearney, M. E. Brezinsky, S. A. Bopart, et al., �??Images in cardiovascular medicine: catheter based optical imaging of a human coronary artery,�?? Circulation 94, 3013 (1996).
[CrossRef] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, G. J. Tearney, �??Characterization of human atherosclerosis by optical coherence tomography,�?? Circulation 106, 1640-1645 (2002).
[CrossRef] [PubMed]

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Dermatology

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, �??Subsurface imaging of living skin with optical coherence microscopy,�?? Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

Gastrointest. Endosc.

B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, �??High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,�?? Gastrointest. Endosc. 51, 464-474 (2000).
[CrossRef]

Gastrointestinal Endoscopy

M. V. Sivak, Jr., K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, �??High-resolution endoscopic imaging of the GI tract using optical coherence tomography,�?? Gastrointestinal Endoscopy 51, 474-479 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, Jr., �??Optical coherence tomography and microscopy in gastrointestinal tissues,�?? IEEE J. of Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

C. Strom, B. Sander, N. Larsen, M. Larsen, H.Lund-Andersen, �??Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography,�?? Invest. Ophthalmol. Vis. Sci. 43, 241-245 (2002).
[PubMed]

J. Am. College Cardiology

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, G. J. Tearney, �??Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography,�?? J. Am. College Cardiology 39, 604-609 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Cense, T. C. Chen, B.H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,�?? J. Biomed. Opt. 9, 121-125 (2004).
[CrossRef] [PubMed]

J. Mod. Opt.

F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, �??Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541-553(1999).

Obstet. Gynecol.

C. Pitris, A. Goodman, S. A. Bopart, J. J. Libus, J. G. Fujimoto, M. E. Brezinski, �??High-resolution imaging of gynecologic neoplasms using optical coherence tomography,�?? Obstet. Gynecol. 93, 135-139 (1999).
[PubMed]

Opt. Commun.

B.Qi, A.P. Himmer, L.M. Gordon, X.D. V. Yang, L.D. Dickensheets, I. A. Vitkin, �??Dynamic focus control in a high-speed optical coherence tomography based on a micromechanical mirror,�?? Opt. Commun. 232, 123-128(2004).
[CrossRef]

J.M. Schmitt, S.L. Lee, K.M. Yung, �??An optical coherence microscope with enhanced power in thick tissue,�?? Opt. Commun. 142, 203-207 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Rep. Progr. Phys.

A. F. Fercher, W. Drexler, C.K. Hitzenberger,and T. Lasser, �??Optical Coherence tomography-principles and applications,�?? Rep. Progr. Phys. 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Semin. Ophthalmol.

A.M. Coppe, G. Ripandelli, �??Optical coherence tomography in the evaluation of vitreoretinal disorders of the macula in highly myopic eyes,�?? Semin. Ophthalmol. 2, 85-88(2003).
[CrossRef]

Other

J. M. Poneros, G. J. Tearney, B. E. Bouma, G. Y. Lauwers, N. S. Nishioka, �??Diagnosis of dysplasia in Barrett�??s esophagus using optical coherence tomography,�?? In: Digestive Disease Week, San Francisco, CA. American Gastroenterological Association, AB113 (2001).

J. Kauppinen, J. Partanen, Fourier Transforms in Spectroscopy, ed.(Wiley-VCH, March 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

OCT images of coronary arteries obtained in vivo; A-Artery with the catheter resting against the vessel wall; B-Large artery with a significant portion of the image outside of the coherence range. Tick marks, 500 µm.

Fig. 2.
Fig. 2.

Schematic of the AR implementation in a standard OCT system.

Fig. 3.
Fig. 3.

Flow chart depicting the adaptive ranging algorithm.

Fig. 4.
Fig. 4.

RSOD Galvanometer driving waveforms. a)- Non AR regime; b) Offset signal; c) ARregime - summation of the offset with the triangle waveform.

Fig. 5.
Fig. 5.

OCT axial reflectivity profile: σ1 is the centroid of the axial reflectivity profile, σ2 is the second moment, and ε is the location of the sample surface.

Fig. 6.
Fig. 6.

Schematic of the MGH AR TD-OCT System. SOA -Semiconductor Optical Amplifier, ∑-summator, PBS-Polarization Beam splitter; BS-beam splitter, BPF-Band Pass Filter.

Fig. 7.
Fig. 7.

AR OCT images of a dorsal finger, obtained in vivo. The finger was slowly moved along the z scanning direction over a distance of approximately 5 mm. A. OCT image with the finger in the initial position; B. OCT image with the finger in the final position.

Fig. 8.
Fig. 8.

Images of a carotid plaque with a 6.0 mm maximum luminal diameter. A. Traditional OCT image demonstrates visualization of only a small portion of the arterial cross-section. B. Adaptive ranging enables imaging of the entire arterial cross-section with high signal strength. Tick marks, 1 mm.

Fig. 9.
Fig. 9.

Retinal OCT images of a volunteer. A. OCT image obtained from the right eye of a volunteer without adaptive ranging; B. OCT image with adaptive ranging, obtained from the same location (right eye of the same volunteer). Images are composed of 512 A-lines of 1024 pixels and cover a depth of 1 mm.

Fig. 10.
Fig. 10.

A. Experimental setup for measurement of the AR performances; B. OCT image without AR; C. OCT image with the AR turned “on”. Gray scale bars in B and C represent OCT signal intensity.

Fig. 11.
Fig. 11.

Peak-to-peak OCT image surface displacement rate with AR on versus the surface velocity with AR off.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR = 10 log ( η P s 2 h ν N E B ) ,
NEB = Δ λ · f d λ 0 ,

Metrics