Abstract

We report on the design of a polarization maintaining, double-clad, Yb doped photonic crystal fiber and demonstrate its lasing properties. The polarizing properties of the fiber rely on birefringence and differential loss introduced by an anisotropic hole structure. Due to a slight leak from the core to the inner cladding only ~80% of the output light is in the core mode. We have demonstrated 2.9W of output in this mode with a polarization ratio in excess of 200:1.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503</a>.
    [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Optical properties of high-delta air silica microstructure optical fibers,�?? Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  6. J. C.Knight, T. A.Birks, R. F.Cregan, P. St.J. Russel, and J.-P. de Sandro, �??Large mode area photonic crystal fiber,�?? Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  7. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, �??Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding�??, Opt. Express 9, 714-720 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714</a>.
    [PubMed]
  8. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser,�?? Opt. Express 11, 818-823 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a>.
    [CrossRef] [PubMed]
  9. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, �??Polarization maintaining large mode area photonic crystal fiber,�?? Opt. Express 12, 956-960 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>.
    [CrossRef] [PubMed]
  10. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  11. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers�??, IEEE Phot. Tech. Lett. 13, 588 (2001).
    [CrossRef]
  12. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, 2003.
    [CrossRef]
  13. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, �??Absolutely single polarization photonic crystal fiber,�?? IEEE Phot. Tech. Lett. 16, 182-184 (2004).
    [CrossRef]
  14. A. Hideur, T. Chartier, C. �?zkul, and F. Sanchez, �??Dynamics and stabilization of a high power sidepumped Yb-doped double-clad fiber laser,�?? Opt. Commun. 186, 311-317 (2000).
    [CrossRef]

Electron. Lett. (1)

J. C.Knight, T. A.Birks, R. F.Cregan, P. St.J. Russel, and J.-P. de Sandro, �??Large mode area photonic crystal fiber,�?? Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE Phot. Tech. Lett. (2)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers�??, IEEE Phot. Tech. Lett. 13, 588 (2001).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, �??Absolutely single polarization photonic crystal fiber,�?? IEEE Phot. Tech. Lett. 16, 182-184 (2004).
[CrossRef]

Opt. Commun. (1)

A. Hideur, T. Chartier, C. �?zkul, and F. Sanchez, �??Dynamics and stabilization of a high power sidepumped Yb-doped double-clad fiber laser,�?? Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Other (1)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, 2003.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Optical microscope image of the polarization maintaining fiber. The inner cladding, defined by the outer ring of air holes has a diameter of ~140 µm. The two larger holes near the centre introduce birefringence and a differential loss of the two polarization states while the smaller ones provide the microstructure defining the laser mode. (b) Near-field recorded at a wavelength of 950 nm for a non-air-clad, passive test fiber with approximately similar photonic crystal structure around the core. The fibers were fabricated using stack and draw techniques [12].

Fig. 2.
Fig. 2.

Experimental set-up. The polarization maintaining air-clad large-mode-area photonic crystal fiber is pumped with a 10 W fiber coupled 980 nm diode laser. Feedback for the fiber laser is provided by the combination of a dichroic beamsplitter and high-reflecting mirror in the pump end and the cleaved fiber facet in the output end. Potential birefringence from this beamsplitter is eliminated by aligning the incoupling end of the fiber so that its polarization axes coincide with the s- and p-polarizations of the beamsplitter. The output polarization can be analyzed using a half-wave plate and a polarizing beam splitter. The laser output can be imaged onto a CCD detector in order to visually distinguish laser output from the core and the cladding.

Fig. 3.
Fig. 3.

Laser output power vs. coupled pump power for a 20 m length of fiber. The blue points correspond to the measurements with a high-reflector providing the feedback in the incoupling end. The observed slope efficiency is 68%. The two lower curves correspond to the outputs of the two ends of the fiber when the laser is operated with only the feedback from the fiber facets. The output from the incoupling end is approximately 25% higher than from the other end. The sum of these two outputs (indicated by the red curve) has the same slope efficiency as the initial results with feedback, but has a slightly higher threshold.

Fig. 4.
Fig. 4.

Polarization analysis of the light in the fiber core. The fiber output is passed through a half-wave plate and a polarizer. The relative transmission through the polarizer of the output from the fiber core is shown as a function of rotation angle of the half-wave plate. The solid curve shows the expected sinusoidal dependence. The ratio of minimum to maximum of the data is 1:200.

Fig. 5.
Fig. 5.

Transmitted pump power (blue dots) and laser output power (red diamonds) as a function of fiber length when the laser is operated with feedback from a high-reflecting mirror. The smooth curve corresponds to a pump coupling efficiency of 55% and fiber attenuation of 0.48 dB/m.

Metrics