Abstract

We present a fully monolithically integrated long vertical cavity surface emitting laser using an InGaAs/GaAs/AlGaAs gain medium directly bonded to a glass substrate with a concave micromirror. The lasing wavelength is 980nm with a threshold of 20mA for a 52µm mesa, differential quantum efficiency of 58%, and maximum output power of 39mW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E.M. Strzelecka, D. Lee, J.P. Watson, M. Liebman, G.P. Carey, B.D. Cantos, W.R. Hitchens and D. Heald, �??High-power surface emitting semiconductor laser with extended vertical compound cavity,�?? Electron. Lett. 39, 523-525 (2003).
    [CrossRef]
  2. D.K. Serkland, P. Esherick, K.M. Geib, G.M. Peake and A.A. Allerman, �??Optimization of external cavity VCSELs,�?? in Photonics West, H.Q. Hou, Proc. SPIE 4994, 30 (2003).
  3. E.A. Avrutin, J.H. Marsh and E.L. Portnoi, �??Monolithic and multi-GigaHertz mode-locked semiconductor lasers: Construction, experiments, models and applications,�?? IEE Proc., Optoelectron. 147, 251-278 (2000).
    [CrossRef]
  4. P.J. Delfyett, D.H. Hartman and S. Zuber Ahmad, �??Optical Clock Distribution Using a Mode-Locked Semiconductor Laser Diode System,�?? J. Lightwave Technol. 9, 1646-1649 (1991)
    [CrossRef]
  5. Ph. Nussbaum, R. Völkel, H.P. Herzig, M. Eisner and S. Haselbeck, �??Design, fabrication and testing of Microlens arrays for sensors and Microsystems,�?? Pure Appl. Opt. 6, 617-636 (1997).
    [CrossRef]
  6. H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel and J.M. Ramsey, �??Low temperature bonding for microfabrication of chemical analysis devices,�?? Sens. Actuator B-Chem. 45, 199-207 (1997).
    [CrossRef]
  7. L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Interscience, 1995), Chap. 2.

Electron. Lett.

J.G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E.M. Strzelecka, D. Lee, J.P. Watson, M. Liebman, G.P. Carey, B.D. Cantos, W.R. Hitchens and D. Heald, �??High-power surface emitting semiconductor laser with extended vertical compound cavity,�?? Electron. Lett. 39, 523-525 (2003).
[CrossRef]

IEE Proc., Optoelectron.

E.A. Avrutin, J.H. Marsh and E.L. Portnoi, �??Monolithic and multi-GigaHertz mode-locked semiconductor lasers: Construction, experiments, models and applications,�?? IEE Proc., Optoelectron. 147, 251-278 (2000).
[CrossRef]

J. Lightwave Technol.

P.J. Delfyett, D.H. Hartman and S. Zuber Ahmad, �??Optical Clock Distribution Using a Mode-Locked Semiconductor Laser Diode System,�?? J. Lightwave Technol. 9, 1646-1649 (1991)
[CrossRef]

Photonics West, H.Q. Hou

D.K. Serkland, P. Esherick, K.M. Geib, G.M. Peake and A.A. Allerman, �??Optimization of external cavity VCSELs,�?? in Photonics West, H.Q. Hou, Proc. SPIE 4994, 30 (2003).

Pure Appl. Opt.

Ph. Nussbaum, R. Völkel, H.P. Herzig, M. Eisner and S. Haselbeck, �??Design, fabrication and testing of Microlens arrays for sensors and Microsystems,�?? Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Sens. Actuator B-Chem.

H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel and J.M. Ramsey, �??Low temperature bonding for microfabrication of chemical analysis devices,�?? Sens. Actuator B-Chem. 45, 199-207 (1997).
[CrossRef]

Other

L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Interscience, 1995), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic of a monolithically integrated vertical long cavity surface emitting laser.

Fig. 2.
Fig. 2.

(a) Output power and voltage drop vs. input current for a device with a 52µm mesa and a 600µm ROC micromirror. (b) Lasing spectrum of the same device for three input currents.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 ω flat = 2 λ n π L R L 2
2 ω concave = 2 λ n π L 2 R 2 L R L 2

Metrics