Abstract

A novel design of polarization splitter in three-core photonic crystal fibers (PCFs) has been proposed. The three-core PCF consists of two given identical cores with two-fold symmetry separated by a core with high birefringence. The polarization splitter is based on the phenomenon of resonant tunneling. Numerical simulations with a full vectorial beam propagation method demonstrate that it is possible to obtain a 1.9-mm-long splitter with the extinction ratio better than -20 dB and a bandwidth of 37 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. Yokohama, K. Okamato, J. Noda, �??Fiber-optic polarising beam splitter employing birefringent-fiber coupler,�?? Electron. Lett. 21, 415-416 (1985).
    [CrossRef]
  2. K.-C. Lin, W.-C. Chuang, and W.-Y. Lee, �??Proposal and analysis of an ultrashort directional-coupler polarization splitter with an NLC coupling layer,�?? J. Lightwave Technol. 14, 2547-2553 (1996).
    [CrossRef]
  3. T. Hayakawa, S. Asakawa, and Y. Kokubun, �??ARROW-B type polarization splitter with asymmetric Ybranch fabricated by a self-alignment process,�?? J. Lightwave Technol. 15, 1165-1170 (1997).
    [CrossRef]
  4. D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M.D.L. Rue, and R. Baets, �??A compact twodimensional grating coupler used as a polarization splitter,�?? IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  5. S. Shi, A. Sharkawy, C. Chen, D.M. Pustai, and D.W. Prather, �??Dispersion-based beam splitter in photonic crystals,�?? Opt. Lett. 29, 617-619 (2004).
    [CrossRef] [PubMed]
  6. P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  7. B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, and A.H. Greenaway, �??Experimental study of dualcore photonic crystal fibre,�?? Electron. Lett. 36, 1358-1359 (2000).
    [CrossRef]
  8. W.N. MacPherson, J.D.C. Jones, B.J. Mangan, J.C. Knight, and P.St.J. Russell, �??Two-core photonic crystal fiber for Doppler difference velocimetry,�?? Opt. Commun. 233, 375-380 (2003).
    [CrossRef]
  9. K. Saitoh, Y. Sato, and M. Koshiba, �??Coupling characteristics of dual-core photonic crystal fiber couplers,�?? Opt. Express 11, 3188-3195 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3188.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3188</a>
    [CrossRef] [PubMed]
  10. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  11. L. Zhang and C. Yang, �??Polarization splitter based on photonic crystal fibers,�?? Opt. Express 11, 1015-1020 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1015.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1015</a>
    [CrossRef] [PubMed]
  12. K. Thyagarajan, S.D. Seshadri, and A.K. Ghatak, �??Waveguide polarizer based on resonant tunneling,�?? J. Lightwave Technol. 9, 315-317 (1991).
    [CrossRef]
  13. K. Saitoh and M. Koshiba, �??Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,�?? J. Lightwave Technol. 19, 405-413 (2001).
    [CrossRef]
  14. J.P. Donnelly, H.A. Haus, and N. Whitaker, �??Symmetric three-guide optical coupler with nonidentical center and outside guides,�?? IEEE J. Quantum Electron. QE-23, 401-406 (1987).
    [CrossRef]
  15. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  16. F.L. Teixeira and W.C. Chew, �??General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,�?? IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
    [CrossRef]

Electron. Lett.

I. Yokohama, K. Okamato, J. Noda, �??Fiber-optic polarising beam splitter employing birefringent-fiber coupler,�?? Electron. Lett. 21, 415-416 (1985).
[CrossRef]

B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, and A.H. Greenaway, �??Experimental study of dualcore photonic crystal fibre,�?? Electron. Lett. 36, 1358-1359 (2000).
[CrossRef]

IEEE J. Quantum Electron

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE J. Quantum Electron.

J.P. Donnelly, H.A. Haus, and N. Whitaker, �??Symmetric three-guide optical coupler with nonidentical center and outside guides,�?? IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

IEEE Microwave Guided Wave Lett.

F.L. Teixeira and W.C. Chew, �??General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,�?? IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M.D.L. Rue, and R. Baets, �??A compact twodimensional grating coupler used as a polarization splitter,�?? IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol.

K.-C. Lin, W.-C. Chuang, and W.-Y. Lee, �??Proposal and analysis of an ultrashort directional-coupler polarization splitter with an NLC coupling layer,�?? J. Lightwave Technol. 14, 2547-2553 (1996).
[CrossRef]

T. Hayakawa, S. Asakawa, and Y. Kokubun, �??ARROW-B type polarization splitter with asymmetric Ybranch fabricated by a self-alignment process,�?? J. Lightwave Technol. 15, 1165-1170 (1997).
[CrossRef]

K. Thyagarajan, S.D. Seshadri, and A.K. Ghatak, �??Waveguide polarizer based on resonant tunneling,�?? J. Lightwave Technol. 9, 315-317 (1991).
[CrossRef]

K. Saitoh and M. Koshiba, �??Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,�?? J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

Opt. Commun.

W.N. MacPherson, J.D.C. Jones, B.J. Mangan, J.C. Knight, and P.St.J. Russell, �??Two-core photonic crystal fiber for Doppler difference velocimetry,�?? Opt. Commun. 233, 375-380 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The upper panel shows the schematic cross-section of the proposed polarization splitter in three-core PCF. The lower panels show the close up around the cores A and B.

Fig. 2.
Fig. 2.

The variation of (a) the effective refractive indices of the supermodes of the three-core PCF and (b) the value of 2neff ,3-neff ,1-neff ,2 for the x-polarization state as a function of d 2/Λ, where the background silica index is assumed to be 1.45 and the operating wavelength λ=1550 nm.

Fig. 3.
Fig. 3.

The upper and lower panels show the normalized power variation along the propagation distance in the cores A and C, respectively.

Fig. 4.
Fig. 4.

The x- and y-polarized mode field distributions at (a) z=0 mm, (b) z=0.8 mm, (c) z=0.97 mm, (d) z=1.14 mm, and (e) z=1.93 mm. The left and right panels show the x-polarized and y-polarized modes, respectively.

Fig. 5.
Fig. 5.

The wavelength dependence of the extinction ratios at a PCF length of 1.93 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n eff , 1 n eff , 3 = n eff , 3 n eff , 2
2 n eff , 3 n eff , 1 n eff , 2 = 0 ,
( n eff , 1 n eff , 3 ) x pol ( n eff , 3 n eff , 2 ) x pol
( n eff , 1 n eff , 3 ) y pol ( n eff , 3 n eff , 2 ) y pol .
L = λ { 2 ( n eff , 1 n eff , 3 ) x pol } ,
ERA = 10 log 10 output power of x polarization in core A output power of y polarization in core A
ERC = 10 log 10 output power of y polarization in core C output power of x polarization in core C .

Metrics