Abstract

Dielectric microspheres are theoretically studied to reduce the propagation loss of Si-based photonic crystal slab waveguides. Two-dimensional photonic crystal formed by etched air hole can act as a template for microsphere sedimentation. The analytical results show that the transmission of the photonic crystal slab waveguides with microspheres can be enhanced to be around twice that without microspheres.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realistic photonic bandgap structures for TM-polarized light for all-optical switching

Ping Ma, Franck Robin, and Heinz Jäckel
Opt. Express 14(26) 12794-12802 (2006)

Near-field probing of active photonic-crystal structures

D. Gérard, L. Berguiga, F. de Fornel, L. Salomon, C. Seassal, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch
Opt. Lett. 27(3) 173-175 (2002)

Planar photonic crystal structure with inherently single-mode waveguides

Alejandro Martinez, Jaime Garcia, Guillermo Sanchez, and Javier Marti
J. Opt. Soc. Am. A 20(11) 2131-2136 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [Crossref]
  2. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit withmembrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927
    [Crossref] [PubMed]
  3. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
    [Crossref]
  4. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos,” Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
    [Crossref]
  5. M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
    [Crossref]
  6. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
    [Crossref]
  7. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
    [Crossref]
  8. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
    [Crossref] [PubMed]
  9. W. Kuang, C. Kim, A. Stapleton, W. J. Kim, and J. D. O’Brien, “Calculated out-of-plane transmission loss for photonic-crystal slab waveguides,” Opt. Lett. 28, 1781–1783 (2003).
    [Crossref] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
    [Crossref]
  11. S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
    [Crossref]
  12. T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
    [Crossref]
  13. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [Crossref]
  14. E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
    [Crossref] [PubMed]
  15. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823–1831 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823
    [Crossref] [PubMed]
  16. F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
    [Crossref]
  17. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
    [Crossref]
  18. K. Kawano and T. Kitoh, “Introduction to optical waveguide analysis,” (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20–35; for BPM: pp. 165–232; for FDTD: pp. 233–250.

2004 (2)

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823–1831 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823
[Crossref] [PubMed]

2003 (3)

2002 (4)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[Crossref]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

2001 (3)

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

2000 (3)

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos,” Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

1999 (1)

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[Crossref]

1998 (1)

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Agio, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Alleman, A.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Arentoft, J.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Asakawa, K.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

Augustin, M.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Baba, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[Crossref]

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Bouadma, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Bresson, F.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
[Crossref]

Carlsson, N.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Chen, C.

Chen, C. C.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
[Crossref]

Chen, Y. W.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
[Crossref]

Chi, G. C.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
[Crossref]

Chow, E.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos,” Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[Crossref]

Chutinan, A

A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[Crossref]

D’Urso, B.

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Etrich, C.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Fuchs, H.-J.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Fukaya, N.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[Crossref]

Hou, H.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Ikeda, N.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Iliew, R.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Inoue, K.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

Iwai, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Joannopoulos, J. D.

Joannopoulos, J.D.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Johnson, S. G.

Johnson, S.G.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Juodkazis, S.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

Kafesaki, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Katayama, Y.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

Kawai, N.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Kawano, K.

K. Kawano and T. Kitoh, “Introduction to optical waveguide analysis,” (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20–35; for BPM: pp. 165–232; for FDTD: pp. 233–250.

Kim, C.

Kim, W. J.

Kitoh, T.

K. Kawano and T. Kitoh, “Introduction to optical waveguide analysis,” (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20–35; for BPM: pp. 165–232; for FDTD: pp. 233–250.

Kley, E.-B.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Koyama, T.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

Kristensen, M.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Kuang, W.

Le Gouezigou, L.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Lederer, F.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Lin, S. Y.

Lin, S.Y.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Marcinkevicius, A.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

Matsuo, S.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

McNab, S. J.

Misawa, H.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

Mizeikis, V.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

Moll, N.

Motegi, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Noda, S.

A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[Crossref]

Nolte, S.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

O’Brien, J.

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

O’Brien, J. D.

Okano, M.

A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[Crossref]

Painter, O.

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Peschel, U.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Prather, D. W.

Pustai, D. M.

Sakai, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Schelle, D.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Scherer, A.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Sharkawy, A.

Shi, S.

Sondergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Soukoulis, C. M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Stapleton, A.

Sugimoto, Y.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Takemori, T.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Talneau, A.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

Tombrello, T.

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Tunnermann, A.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Vawter, G.A.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Villeneuve, P.R.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Vlasov, Y. A.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Watanabe, Y.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Wendt, J.R.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Yamada, S.

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

Yariv, A.

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[Crossref]

Zubrzycki, W.

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

A Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends,in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[Crossref]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,” Appl. Phys. Lett. 80, 547–549 (2002).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Appl. Surf. Science (1)

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,” Appl. Surf. Science 17, 281–288 (2003).
[Crossref]

Electron. Lett. (1)

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

J. Appl. Phys. (1)

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001).
[Crossref]

J. of Photochemistry and Photobiology C (1)

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
[Crossref]

J. Opt. Soc. Am B (1)

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998).
[Crossref]

Nature (1)

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[Crossref] [PubMed]

Other (1)

K. Kawano and T. Kitoh, “Introduction to optical waveguide analysis,” (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20–35; for BPM: pp. 165–232; for FDTD: pp. 233–250.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic drawing of PCSWGs (b) Effective index of the slab waveguide for different thickeness of the slab. (c) Fundamental mode of the slab waveguide.

Fig. 2.
Fig. 2.

Cross section of PCSWG with microspheres at X-Y plane. The etched holes act as a template for sedimentation of microspheres.

Fig. 3.
Fig. 3.

Transmission spectra of PCSWG with microspheres of different refractive indexes (a) for the TE mode and (b) for the TM mode.

Fig. 4.
Fig. 4.

Propagation of light in the TM mode. The loss in the SiO2 layer is reduced by deposition of microspheres.

Metrics