Abstract

Relativistic continuum dynamics for electrons from the ionization of atoms in an ultraintense (1017 W/cm2 to 1020 W/cm2) laser focus are analyzed using a semi-classical wavelet model. The results quantify the energy and angle resolved photoionization yields due to the developing relativistic dynamics in ultraintense fields. Using the final state momentum, the bremsstrahlung radiation yield is calculated and shows a linear relationship between the radiation cutoff and the laser intensity. At 1020 W/cm2 photons with energies out to 10MeV should be observed. The results are quantitatively comparable to the observed angle resolved photoelectron spectra of current ultraintense laser-atom experiments. The results show the azimuthal angular distributions becoming more isotropic with increasing intensity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Burris, and P. Sprangle, �??A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons,�?? Phys. Rev. Lett. 82, 1688 (1999).
    [CrossRef]
  2. T. E. Cowan, A. W. Hunt, T. W. Phillips, S. C. Wilks, M. D. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, T. Parnell, D. M. Pennington, R. A. Snavely, and Y. Takahashi, �??Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions,�?? Phys. Rev. Lett. 84, 903 (2000).
    [CrossRef] [PubMed]
  3. P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F. N. Beg, K. Krushelnick, M. Tatarakis, et al., �??Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,�?? Physics of Plasmas 6, 2150 (1999).
    [CrossRef]
  4. V. P. Krainov, "High-energy electron spectra of atoms undergoing direct tunnelling ionization by linearly polarized laser radiation," J. Phys. B 36, L169 (2003).
    [CrossRef]
  5. V. P. Krainov, A. V. Sofronov, "High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation," Phys. Rev. A 69, 015401 (2004).
    [CrossRef]
  6. E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, �??�??Nonrelativistic�?? ionization of the L-shell states in argon by a �??relativistic�?? 1019 W/cm2 laser field,�?? Phys. Rev. A 63, 042712 (2001).
    [CrossRef]
  7. Richard Taieb, Valerie Veniard, Alfred Maquet, �??Photoelectron Spectra from Multiple Ionization of Atoms in Ultra-Intense Laser Pulses,�?? Phys. Rev. Lett. 87, 053002 (2001).
    [CrossRef] [PubMed]
  8. A. Maltsev and T. Ditmire, �??Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,�?? Phys. Rev. Lett. 90, 053002 (2003).
    [CrossRef] [PubMed]
  9. Yousef I. Salamin and Christoph H. Keitel, �??Acceleration by a Tightly Focused Laser Beam,�?? Phys. Rev. Lett. 88, 095005 (2002).
    [CrossRef] [PubMed]
  10. Brice Quesnel and Patrick Mora, �??Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,�?? Phys. Rev. E 58, 3719 (1998).
    [CrossRef]
  11. Guido R. Mocken and Christoph H. Keitel, �??Quantum Signatures in Laser-Driven Relativistic Multiple Scattering,�?? Phys. Rev. Lett. 91, 173202 (2003).
    [CrossRef] [PubMed]
  12. Q. Su, B. A. Smetanko, and R. Grobe, �??Relativistic suppression of wave packet spreading,�?? Optics Express 2, 277 (1998).
    [CrossRef] [PubMed]
  13. L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Oxford, New York, 1979)
  14. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, �??Precision Measurement of Strong Field Double Ionization of Helium,�?? Phys. Rev. Lett. 73, 1227 (1994).
    [CrossRef] [PubMed]
  15. R. W. Brankin, I. Gladwell, and L.F. Shampine, Numerical Algorithms Group Ltd, (Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK)
  16. L.F. DiMauro and P. Agostini, �??Ionization Dynamics in Strong Laser Fields,�?? in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, (Academic Press, San Diego, Calif., 1995), pp. 79-118.
    [CrossRef]
  17. V.R. Bhardwaj, S.A. Aseyev, M. Mehendale, G.L. Yudin, D.M. Villeneuve, D.M. Rayner, M.Y. Ivanov, P.B. Corkum, �??Few Cycle Dynamics of Multiphoton Double Ionization,�?? Phys. Rev. Lett. 86, 3522-3525 (2001).
    [CrossRef] [PubMed]
  18. E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, H. C. Kapteyn, �??Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching,�?? Science 302, 95-98 (2003).
    [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1990)
  20. Bruno Rossi, High Energy Particles (Prentice-Hall, New York, 1952)
  21. H. Bethe and W. Heitler, �??On the Stopping of Fast Particles and on the Creation of Positive Electrons,�?? Proc. R. Soc. London, Ser. A 146, 83 (1934).
    [CrossRef]

Advances in Atomic, Molecular, and Optic (1)

L.F. DiMauro and P. Agostini, �??Ionization Dynamics in Strong Laser Fields,�?? in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, (Academic Press, San Diego, Calif., 1995), pp. 79-118.
[CrossRef]

J. Phys. B (1)

V. P. Krainov, "High-energy electron spectra of atoms undergoing direct tunnelling ionization by linearly polarized laser radiation," J. Phys. B 36, L169 (2003).
[CrossRef]

Optics Express (1)

Q. Su, B. A. Smetanko, and R. Grobe, �??Relativistic suppression of wave packet spreading,�?? Optics Express 2, 277 (1998).
[CrossRef] [PubMed]

Phys. Rev. A (2)

V. P. Krainov, A. V. Sofronov, "High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation," Phys. Rev. A 69, 015401 (2004).
[CrossRef]

E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, �??�??Nonrelativistic�?? ionization of the L-shell states in argon by a �??relativistic�?? 1019 W/cm2 laser field,�?? Phys. Rev. A 63, 042712 (2001).
[CrossRef]

Phys. Rev. E (1)

Brice Quesnel and Patrick Mora, �??Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,�?? Phys. Rev. E 58, 3719 (1998).
[CrossRef]

Phys. Rev. Lett. (8)

Guido R. Mocken and Christoph H. Keitel, �??Quantum Signatures in Laser-Driven Relativistic Multiple Scattering,�?? Phys. Rev. Lett. 91, 173202 (2003).
[CrossRef] [PubMed]

C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Burris, and P. Sprangle, �??A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons,�?? Phys. Rev. Lett. 82, 1688 (1999).
[CrossRef]

T. E. Cowan, A. W. Hunt, T. W. Phillips, S. C. Wilks, M. D. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, T. Parnell, D. M. Pennington, R. A. Snavely, and Y. Takahashi, �??Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions,�?? Phys. Rev. Lett. 84, 903 (2000).
[CrossRef] [PubMed]

Richard Taieb, Valerie Veniard, Alfred Maquet, �??Photoelectron Spectra from Multiple Ionization of Atoms in Ultra-Intense Laser Pulses,�?? Phys. Rev. Lett. 87, 053002 (2001).
[CrossRef] [PubMed]

A. Maltsev and T. Ditmire, �??Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,�?? Phys. Rev. Lett. 90, 053002 (2003).
[CrossRef] [PubMed]

Yousef I. Salamin and Christoph H. Keitel, �??Acceleration by a Tightly Focused Laser Beam,�?? Phys. Rev. Lett. 88, 095005 (2002).
[CrossRef] [PubMed]

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, �??Precision Measurement of Strong Field Double Ionization of Helium,�?? Phys. Rev. Lett. 73, 1227 (1994).
[CrossRef] [PubMed]

V.R. Bhardwaj, S.A. Aseyev, M. Mehendale, G.L. Yudin, D.M. Villeneuve, D.M. Rayner, M.Y. Ivanov, P.B. Corkum, �??Few Cycle Dynamics of Multiphoton Double Ionization,�?? Phys. Rev. Lett. 86, 3522-3525 (2001).
[CrossRef] [PubMed]

Physics of Plasmas (1)

P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F. N. Beg, K. Krushelnick, M. Tatarakis, et al., �??Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,�?? Physics of Plasmas 6, 2150 (1999).
[CrossRef]

Proc. R. Soc. London (1)

H. Bethe and W. Heitler, �??On the Stopping of Fast Particles and on the Creation of Positive Electrons,�?? Proc. R. Soc. London, Ser. A 146, 83 (1934).
[CrossRef]

Science (1)

E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, H. C. Kapteyn, �??Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching,�?? Science 302, 95-98 (2003).
[CrossRef] [PubMed]

Other (4)

J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1990)

Bruno Rossi, High Energy Particles (Prentice-Hall, New York, 1952)

R. W. Brankin, I. Gladwell, and L.F. Shampine, Numerical Algorithms Group Ltd, (Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK)

L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Oxford, New York, 1979)

Supplementary Material (2)

» Media 1: MOV (334 KB)     
» Media 2: MOV (369 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(342 KB) Movie of the ionization wave function probability from one Ne+7 ion at the center of a f#/1.5, 2 1017 W/cm2 peak focus.

Fig. 2.
Fig. 2.

(378 KB) Movie of the ionization wave function probability from one Ar+15 ion at the center of a f#/1.5, 1 1019 W/cm2 peak focus. The x-axis extends to the exp(-2) beam radius and the z-axis to one Raleigh length.

Fig. 3.
Fig. 3.

Final state momentum plots for the ionization of atoms in a f#/2.5 focus; (a) and (b) are for Ne+7 at 2 1017 W/cm2, (c) and (d) are for Ar+15 at 1 1019 W/cm2, (e) and (f) are for Na10+ at 1 1020 W/cm2.

Fig. 4.
Fig. 4.

The electron energy spectrum (same conditions as Fig. 3) from 2 1017 W/cm2 (a,d), 1 1019 W/cm2 (b,e), and 1 1020 W/cm2 (c,f). Before normalization the peak values are 5 10-4, 5 10-6, 1 10-6 electron/(ion-eV-steradian) for the three intensities, respectively. In (a), (b), and (c) the energy spectrum is as function of θ from the z-axis at ϕ=0, i.e. in the x-z field polarization plane. In (d), (e), and (f) the energy spectrum is as function of θ from the z-axis at ϕ=90, i.e. in the y-z plane.

Fig, 5.
Fig, 5.

The azimuthal angle resolved photoelectron distributions for low (orange-dash), and high energy (red-solid) photoelectrons at 2 1017 W/cm2 (a), 1 1019 W/cm2 (b), and 1 1020 W/cm2 (c).

Fig. 6.
Fig. 6.

The total energy radiated by bremsstrahlung normalized to a single ionization event at the intensities of 2 1017 W/cm2 (dotted), 1 1019 W/cm2 (dashed yellow), and 1 1020 W/cm2 (red).

Tables (1)

Tables Icon

Table 1. Energy and angle regions of interest for low and high energy azimuthal dependence.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d p x d t = q ( E x p z γ m B y ) ; d p y d t = 0 ; d p z d t = q p x γ m B y
d ( energy ) d t = q p x γ m E x
d Φ = α Z 2 ( e 2 m c 2 ) 2 p p 0 d k k { 4 3 2 E 0 E p 2 + p 0 2 p 2 p 0 2 + μ 2 ( ε 0 E p 0 3 + ε E 0 p 3 ε ε 0 p p 0 ) + [ 8 3 E 0 E p 0 p + k 2 p 0 3 p 3 ( E 0 2 E 2 + p 0 2 p 2 ) ] L + μ 2 k 2 p p 0 [ E 0 E + p 0 2 p 0 3 ε 0 E 0 E + p 2 p 3 ε + 2 k E 0 E p 2 p 0 2 ] L }
α = e 2 c μ = m e c 2 ε = log E + p E p = 2 log E + p μ ε 0 = log E 0 + P 0 E 0 P 0 = 2 log E 0 + p μ
L = log p 0 2 + p 0 p E 0 k p 0 2 p 0 p E 0 k = 2 log E 0 E + p 0 p μ 2 μ k
d Φ = α Z 2 ( e 2 μ ) 2 d k k 1 E 0 2 [ ( E 0 2 + E 2 ) ( ϕ 1 ( χ ) 4 3 log Z ) 2 3 E 0 E ( ϕ 2 ( χ ) 4 3 log Z ) ]

Metrics