Abstract

We present a multi trap optical tweezes system that enables to generate two-dimensional dynamical configurations of focal spot where the trapping force of each element of the pattern can be individually changed. Force gradients in the pN range can be generated on a micrometer scale.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu,�??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. David G. Grier,�??A revolution in optical manipulation,�?? Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic and T. Yamane �??Optical trapping and manipulation of single cells using infrared laser beams,�?? Nature 330, 769 (1996).
    [CrossRef]
  4. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger and T. Nystrom �??Sorting out bacteria viability with optical tweezers,�?? J. Bacteriology, 182, 5551 (2000).
    [CrossRef]
  5. E. T.-Anderson, R. S. St. Jules, D. M. Sherry, J. Lichtenberger and M. Hassanain �??Micromanipulation of retinal Neurons by Optical tweezers,�??, Molecular Vision 4, 12 (1998).
  6. V. M. Laurent, S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey and F. Gallet �??Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers,�?? J. Biomech. Eng. 124, 408-421 (2002).
    [CrossRef] [PubMed]
  7. J. T. Finer, R. M. Simmons and J. A. Spudich �??Single myosin molecule mechanics: piconewton forces and nanometre steps,�?? Nature 368, 113 (1994).
    [CrossRef] [PubMed]
  8. K. Svoboda and S. M. Block, �??Force and velocity measured for single kinesin molecules,�?? Cell 77, 773 (1994).
    [CrossRef] [PubMed]
  9. D. Choquet, D. Felsenfeld and M. P. Sheetz �??Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages,�?? Cell 88, 39 (1997).
    [CrossRef] [PubMed]
  10. C. G. Galbraith, K. M. Yamada and M. P. Sheetz �??The relationship between force and focal complex development,�?? J. Cell Biol. 159 695 (2002).
    [CrossRef] [PubMed]
  11. M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, M. A. Schwartz �??Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,�?? Nature cell Biol. 4, 232 (2002).
    [CrossRef] [PubMed]
  12. AJ. Bechhoefer and S. Wilson �??Faster, cheaper, safer optical tweezers for the undergraduate laboratory�?? Am. J. Phys. 70 393-400 (2002).
    [CrossRef]
  13. K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura and H. Masuhara �??Pattern formation and flow control of fine particles by laser-scanning micromanipulation,�?? Opt. Lett. 16 1463-1465 (1991).
    [CrossRef] [PubMed]
  14. K. Visscher, G. Brakenhoff, J. J. Krol �??Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry 14 105-114 (1993).
    [CrossRef] [PubMed]
  15. K. Visscher, S. P. Gross, and S. M. Block �??Construction of multiple-beam optical traps with nanometer-resolution position sensing,�?? IEEE J. Sel. Top. Quantum Electron. 2 1066-1076 (1996).
    [CrossRef]
  16. E. Dufresne and D. G. Grieret �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instrum. 69 1974-1977 (1998).
    [CrossRef]
  17. E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72 1810-1816 (2001).
    [CrossRef]
  18. D. Cojoc, E. di Fabrizio, L. Businaro, S. Cabrini, F. Romanato, L. Vaccari and M. Altissimo �??Design and Fabrication of diffractive optical elements for optical tweezers arrays by means of e-beam lithography,�?? Microelectron. Eng. 61-62 963 (2002).
    [CrossRef]
  19. Jennifer E. Curtis, Brian A. Koss and David G. Grier �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207 169 (2002).
    [CrossRef]
  20. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia and D. McGloin �??Optical trapping of three dimansional structures using dynamic holograms,�?? Opt. Express 11 3562 (2003).
    [CrossRef] [PubMed]
  21. D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di Fabrizio �??Multiple optical trapping by means of diffractive optical elements,�?? Jpn. J. Appl. Phys., 43 6B 3910-3915 (2004).
    [CrossRef]
  22. M. D. Wang, H. Yin, R. Landick, J. Gelles and S. M. Block �??Streching DNA with Optical Tweezers,�?? Biophys. J. 72 1335-1346 (1997).
    [CrossRef] [PubMed]

Am. J. Phys. (1)

AJ. Bechhoefer and S. Wilson �??Faster, cheaper, safer optical tweezers for the undergraduate laboratory�?? Am. J. Phys. 70 393-400 (2002).
[CrossRef]

Biophys. J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles and S. M. Block �??Streching DNA with Optical Tweezers,�?? Biophys. J. 72 1335-1346 (1997).
[CrossRef] [PubMed]

Cell (2)

K. Svoboda and S. M. Block, �??Force and velocity measured for single kinesin molecules,�?? Cell 77, 773 (1994).
[CrossRef] [PubMed]

D. Choquet, D. Felsenfeld and M. P. Sheetz �??Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages,�?? Cell 88, 39 (1997).
[CrossRef] [PubMed]

Cytometry (1)

K. Visscher, G. Brakenhoff, J. J. Krol �??Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry 14 105-114 (1993).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Visscher, S. P. Gross, and S. M. Block �??Construction of multiple-beam optical traps with nanometer-resolution position sensing,�?? IEEE J. Sel. Top. Quantum Electron. 2 1066-1076 (1996).
[CrossRef]

J. Bacteriology (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger and T. Nystrom �??Sorting out bacteria viability with optical tweezers,�?? J. Bacteriology, 182, 5551 (2000).
[CrossRef]

J. Biomech. Eng. (1)

V. M. Laurent, S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey and F. Gallet �??Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers,�?? J. Biomech. Eng. 124, 408-421 (2002).
[CrossRef] [PubMed]

J. Cell Biol. (1)

C. G. Galbraith, K. M. Yamada and M. P. Sheetz �??The relationship between force and focal complex development,�?? J. Cell Biol. 159 695 (2002).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di Fabrizio �??Multiple optical trapping by means of diffractive optical elements,�?? Jpn. J. Appl. Phys., 43 6B 3910-3915 (2004).
[CrossRef]

Microelectron. Eng. (1)

D. Cojoc, E. di Fabrizio, L. Businaro, S. Cabrini, F. Romanato, L. Vaccari and M. Altissimo �??Design and Fabrication of diffractive optical elements for optical tweezers arrays by means of e-beam lithography,�?? Microelectron. Eng. 61-62 963 (2002).
[CrossRef]

Molecular Vision (1)

E. T.-Anderson, R. S. St. Jules, D. M. Sherry, J. Lichtenberger and M. Hassanain �??Micromanipulation of retinal Neurons by Optical tweezers,�??, Molecular Vision 4, 12 (1998).

Nature (3)

David G. Grier,�??A revolution in optical manipulation,�?? Nature 424, 810 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic and T. Yamane �??Optical trapping and manipulation of single cells using infrared laser beams,�?? Nature 330, 769 (1996).
[CrossRef]

J. T. Finer, R. M. Simmons and J. A. Spudich �??Single myosin molecule mechanics: piconewton forces and nanometre steps,�?? Nature 368, 113 (1994).
[CrossRef] [PubMed]

Nature cell Biol. (1)

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, M. A. Schwartz �??Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,�?? Nature cell Biol. 4, 232 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

Jennifer E. Curtis, Brian A. Koss and David G. Grier �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207 169 (2002).
[CrossRef]

Opt. Express (1)

Opt. lett. (1)

Rev. Sci. Instrum. (2)

E. Dufresne and D. G. Grieret �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instrum. 69 1974-1977 (1998).
[CrossRef]

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72 1810-1816 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the multi trap optical tweezers set up.

Fig. 2.
Fig. 2.

Polystyrene latex beads, 2 µm in diameter, trapped by a circle of laser spot(a); deformed in an ellipse (b); deformed by leaving one part of the circle fixed (c); same beads trapped in a squared array (d); deformed along the x direction (e); traps can be moved independently (f).

Fig. 3.
Fig. 3.

Intensity distribution of the spots reflected on the coverslip and imaged onto a CCD camera, for a 4×4 array and a circular distribution.

Fig. 4.
Fig. 4.

(a) Intensity profile along the arrow of Fig. 3, the row number is indicated in the figure. (b) Force calibration corresponding to the different rows of the array.

Metrics