Abstract

We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2~5 to obtain high quality pulses at repetition-rates of 20~50 GHz without significantly changing the system configuration.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Ciaramella, G. Contestabile, A. D�??Errico, C. Loiacono, and M. Presi, �??High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,�?? IEEE Photon. Technol. Lett. 16, 753-755 (2004).
    [CrossRef]
  2. K. K. Gupta, D. Novak, and H. Liu, �??Noise characterization of a regeneratively mode-locked fiber ring laser,�?? IEEE J. Quantum Electron. 36, 70-78 (2000).
    [CrossRef]
  3. T. E. Murphy, �??10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium,�?? IEEE Photon. Technol. Lett. 14, pp. 1424-1426 (2002).
    [CrossRef]
  4. T. Nishimura, Y. Nomura, K. Akiyama, N. Tomita, and T. Isu, �??40 GHz passively mode-locked semiconductor lasers with a novel structure,�?? in Proc. Optical Fiber Communication Conference (OFC 2002), 703-705 (2002).
    [CrossRef]
  5. A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, �??40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,�?? IEEE Photon. Technol. Lett. 6, 1380 �?? 1382 (1994).
    [CrossRef]
  6. P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, �??Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,�?? Opt. Lett. 25, 521-523 (2000).
    [CrossRef]
  7. S. Atkins, and B. Fischer, �??All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation,�?? IEEE Photon. Technol. Lett. 15, 132-134 (2003).
    [CrossRef]
  8. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, A. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, �?? 40-GHz pulse train generation at 1.5mm with a chirped fiber grating as a frequency multiplier,�?? Opt. Lett. 25, 1481-1483 (2000).
    [CrossRef]
  9. N. K. Berger, B. Levit, S. Atkins, B. Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
    [CrossRef]
  10. J. Azana and M. A. Miguel, �??Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,�?? Opt. Lett. 24, 1672-1674 (1999).
    [CrossRef]
  11. N. K. Berger, B. Vodonos, S. Atkins, V. Smulakovsky, A. Bekker, B. Fischer, �??Compression of periodic pulses using all-optical repetition rate multiplication,�?? Opt. Comm. 217, 343-349 (2003).
    [CrossRef]
  12. C. J. S. de Matos, and J. R. Taylor, �??Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,�?? Appl. Phys. Lett. 26, 5356-5358 (2003).
    [CrossRef]
  13. J. Kim, J. Bae, Y. �??G. Han, S. H. Kim, J.-M. Jeong, and S.B. Lee, �??Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift,�?? IEEE Photon. Technol. Lett. 16, 849- 851 (2004).
    [CrossRef]

Appl. Phys. Lett. (1)

C. J. S. de Matos, and J. R. Taylor, �??Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,�?? Appl. Phys. Lett. 26, 5356-5358 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. K. Gupta, D. Novak, and H. Liu, �??Noise characterization of a regeneratively mode-locked fiber ring laser,�?? IEEE J. Quantum Electron. 36, 70-78 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

T. E. Murphy, �??10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium,�?? IEEE Photon. Technol. Lett. 14, pp. 1424-1426 (2002).
[CrossRef]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, �??40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,�?? IEEE Photon. Technol. Lett. 6, 1380 �?? 1382 (1994).
[CrossRef]

S. Atkins, and B. Fischer, �??All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation,�?? IEEE Photon. Technol. Lett. 15, 132-134 (2003).
[CrossRef]

J. Kim, J. Bae, Y. �??G. Han, S. H. Kim, J.-M. Jeong, and S.B. Lee, �??Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift,�?? IEEE Photon. Technol. Lett. 16, 849- 851 (2004).
[CrossRef]

E. Ciaramella, G. Contestabile, A. D�??Errico, C. Loiacono, and M. Presi, �??High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,�?? IEEE Photon. Technol. Lett. 16, 753-755 (2004).
[CrossRef]

OFC 2002 (1)

T. Nishimura, Y. Nomura, K. Akiyama, N. Tomita, and T. Isu, �??40 GHz passively mode-locked semiconductor lasers with a novel structure,�?? in Proc. Optical Fiber Communication Conference (OFC 2002), 703-705 (2002).
[CrossRef]

Opt. Comm. (1)

N. K. Berger, B. Vodonos, S. Atkins, V. Smulakovsky, A. Bekker, B. Fischer, �??Compression of periodic pulses using all-optical repetition rate multiplication,�?? Opt. Comm. 217, 343-349 (2003).
[CrossRef]

Opt. Commun. (1)

N. K. Berger, B. Levit, S. Atkins, B. Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for the chirped fiber Bragg grating based tunable pulse rate multiplication scheme. EFRL, erbium-doped fiber ring laser. PC, polarization controller.

Fig. 2.
Fig. 2.

Measured spectra of (a) group delay and (b) reflectivity variation when the rotation angle of the moving pivot (θ) in Fig. 1 was enlarged.

Fig. 3.
Fig. 3.

Measured GVD with respect to rotation angle of the moving pivot (θ) in Fig. 1.

Fig. 4.
Fig. 4.

(a) Measured autocorrelation traces of the multiplied output pulse train at various repetition-rates of 20~50 GHz together with that of the original 10 GHz input pulses from the mode-locked fiber laser. (b) The corresponding scope traces measured with a fast pin diode and sampling oscilloscope of a combined 45 GHz bandwidth.

Tables (1)

Tables Icon

Table 1. Multiplication Factor vs Required GVD

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 Φ ω 2 = T 2 2 π . N M

Metrics