Abstract

The operation of an unconventional, power-symmetric nonlinear optical loop mirror (NOLM) is investigated. Its principle is based on the creation of a polarization asymmetry between the counterpropagating beams, through the use of a quarter-wave plate and highly twisted fiber in the loop. Using a very intuitive approach, we propose a simple although comprehensive description of the NOLM operation. By adjusting the angle of the quarter-wave plate, the interferometer can be tuned continuously from non-power-dependent operation to nonlinear switching, in a very convenient way. Experimental results confirm theoretical predictions. The properties of the proposed NOLM design make it very attractive for various applications, like pedestal suppression and amplitude regularization of optical pulse trains.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Intensity discrimination with twisted birefringent optical fibers

Herbert G. Winful and Andong Hu
Opt. Lett. 11(10) 668-670 (1986)

Demonstration of nonlinear nonreciprocity and logic operations with a twisted birefringent optical fiber

P. Ferro, S. Trillo, and S. Wabnitz
Opt. Lett. 19(4) 263-265 (1994)

Theory of nonlinear loop mirrors with twisted low-birefringence fiber

Eugene A. Kuzin, Nikolai Korneev, Joseph W. Haus, and Baldemar Ibarra-Escamilla
J. Opt. Soc. Am. B 18(7) 919-925 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking, and cavity dumping,” IEEE J. Quantum Electron. QE-9, 247–250 (1973).
    [Crossref]
  2. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
    [Crossref]
  3. Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
    [Crossref]
  4. E. A. Kuzin, J. M. Estudillo-Ayala, B. Ibarra-Escamilla, and J. W. Haus, “Measurements of beat length in short low-birefringence fibers,” Opt. Lett. 26, 1134–1136 (2001).
    [Crossref]
  5. E. Simova and I. Golub, “Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD,” IEEE Photon. Technol. Lett. 15, 960–962 (2003).
    [Crossref]
  6. K. Mori, T. Morioka, and M. Saruwatari, “Optical parametric loop mirror,” Opt. Lett. 20, 1424–1426 (1995).
    [Crossref] [PubMed]
  7. H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
    [Crossref]
  8. N. J. Doran and D. Wood, “Nonlinear optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [Crossref] [PubMed]
  9. H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, “Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit/s time-division multiplexing signal demultiplexing,” Opt. Lett. 27, 1555–1557 (2002).
    [Crossref]
  10. W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating an nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13, 16–18 (2001).
    [Crossref]
  11. I. N. Duling III, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
    [Crossref]
  12. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
    [Crossref]
  13. M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
    [Crossref]
  14. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
    [Crossref]
  15. J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Optical switching using fiber ring reflectors,” J. Opt. Soc. Am. B 8, 594–601 (1991).
    [Crossref]
  16. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, “Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors,” Opt. Lett. 22, 1150–1152 (1997).
    [Crossref] [PubMed]
  17. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001).
    [Crossref]
  18. S. F. Feldman, D. A. Weinberger, and H. G. Winful, “Polarization instability in a twisted birefringent optical fiber,” J. Opt. Soc. Am. B 10, 1191–1201 (1993).
    [Crossref]
  19. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
    [Crossref]
  20. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
    [Crossref]
  21. Y. Liang, J. W. Lou, J. K. Andersen, J. C. Stocker, O. Boyraz, M. N. Islam, and D. A. Nolan, “Polarization-insensitive nonlinear optical loop mirror demultiplexer with twisted fiber,” Opt. Lett. 24, 726–728 (1999).
    [Crossref]
  22. H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16, 778–780 (1980).
    [Crossref]

2004 (4)

Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
[Crossref]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

2003 (1)

E. Simova and I. Golub, “Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD,” IEEE Photon. Technol. Lett. 15, 960–962 (2003).
[Crossref]

2002 (2)

H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, “Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit/s time-division multiplexing signal demultiplexing,” Opt. Lett. 27, 1555–1557 (2002).
[Crossref]

M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
[Crossref]

2001 (3)

1999 (3)

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
[Crossref]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[Crossref]

Y. Liang, J. W. Lou, J. K. Andersen, J. C. Stocker, O. Boyraz, M. N. Islam, and D. A. Nolan, “Polarization-insensitive nonlinear optical loop mirror demultiplexer with twisted fiber,” Opt. Lett. 24, 726–728 (1999).
[Crossref]

1997 (1)

1995 (1)

1993 (1)

1991 (2)

1988 (2)

N. J. Doran and D. Wood, “Nonlinear optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[Crossref] [PubMed]

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

1980 (1)

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16, 778–780 (1980).
[Crossref]

1973 (1)

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking, and cavity dumping,” IEEE J. Quantum Electron. QE-9, 247–250 (1973).
[Crossref]

Andersen, J. K.

Attygalle, M.

M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
[Crossref]

Bergman, K.

Bogoni, A.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

Boyraz, O.

Camas-Anzueto, J. T.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

Chujo, W.

Doran, N. J.

Duling III, I. N.

Estudillo-Ayala, J. M.

Feldman, S. F.

Futami, F.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
[Crossref]

Ghelfi, P.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

Golub, I.

E. Simova and I. Golub, “Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD,” IEEE Photon. Technol. Lett. 15, 960–962 (2003).
[Crossref]

Gutiérrez-Zainos, F.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

Haus, H. A.

Haus, J. W.

Ibarra-Escamilla, B.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001).
[Crossref]

E. A. Kuzin, J. M. Estudillo-Ayala, B. Ibarra-Escamilla, and J. W. Haus, “Measurements of beat length in short low-birefringence fibers,” Opt. Lett. 26, 1134–1136 (2001).
[Crossref]

Ippen, E. P.

Islam, M. N.

Jung, J.

Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
[Crossref]

Kikuchi, K.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
[Crossref]

Korneev, N.

Koyamada, Y.

Kuzin, E. A.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001).
[Crossref]

E. A. Kuzin, J. M. Estudillo-Ayala, B. Ibarra-Escamilla, and J. W. Haus, “Measurements of beat length in short low-birefringence fibers,” Opt. Lett. 26, 1134–1136 (2001).
[Crossref]

Lee, B.

Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
[Crossref]

Lee, K. L.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating an nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13, 16–18 (2001).
[Crossref]

Lee, Y. W.

Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
[Crossref]

Lefevre, H. C.

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16, 778–780 (1980).
[Crossref]

Liang, Y.

Lim, H. C.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
[Crossref]

Liu, H. F.

M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
[Crossref]

Lou, J. W.

Margalit, M.

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[Crossref]

Méndez Martínez, F.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

Moores, J. D.

Mori, K.

Morioka, T.

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

Namiki, S.

Nirmalathas, A.

M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
[Crossref]

Nolan, D. A.

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[Crossref]

Potì, L.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

Pottiez, O.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

Saruwatari, M.

Sawaguchi, C.

Scaffardi, M.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

Shu, C.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating an nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13, 16–18 (2001).
[Crossref]

Siegman, A. E.

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking, and cavity dumping,” IEEE J. Quantum Electron. QE-9, 247–250 (1973).
[Crossref]

Simova, E.

E. Simova and I. Golub, “Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD,” IEEE Photon. Technol. Lett. 15, 960–962 (2003).
[Crossref]

Sotobayashi, H.

Stocker, J. C.

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[Crossref]

Tang, W. W.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating an nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13, 16–18 (2001).
[Crossref]

Weinberger, D. A.

Winful, H. G.

Wong, W. S.

Wood, D.

Electron. Lett. (2)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutiérrez-Zainos, “Experimental demonstration of NOLM switching based on nonlinear polarisation rotation,” Electron. Lett. 40, 892–894 (2004).
[Crossref]

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16, 778–780 (1980).
[Crossref]

IEEE J. Quantum Electron. (2)

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking, and cavity dumping,” IEEE J. Quantum Electron. QE-9, 247–250 (1973).
[Crossref]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10, 192–196 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (5)

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating an nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13, 16–18 (2001).
[Crossref]

M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).
[Crossref]

Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett. 16, 54–56 (2004).
[Crossref]

E. Simova and I. Golub, “Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD,” IEEE Photon. Technol. Lett. 15, 960–962 (2003).
[Crossref]

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11, 578–580 (1999).
[Crossref]

J. Lightwave Technol. (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, “Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation,” Opt. Commun. 229, 147–159 (2004).
[Crossref]

Opt. Lett. (7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the polarization evolution in the NOLM under study, for circular input polarization. The z axis corresponds to the propagation direction. The effect of the twist-induced optical activity of the loop was not represented. Solid lines correspond to the initial position of the QWP (α=0), and dotted lines to the QWP rotated by an angle α.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Linear NOLM transmission versus quarter-wave plate angle α*. Circles: measured data; Solid line: sinusoidal fit.

Fig. 4.
Fig. 4.

NOLM transmission versus input power, for α*=0.92 (a), 1.35 (b), 1.88 (c), and 2.36 (d). Circles: measured data; Solid line: best fit.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z C + = i β P ( C + 2 + 2 C - 2 ) C + ;
z C - = i β P ( C - 2 + 2 C + 2 ) C - ,
T ( P in , α ) = P out P in = 1 2 1 4 [ cos ( π P in P π ) + cos ( π P in P π + 4 α ) ] .

Metrics