Abstract

We demonstrate a passive harmonic mode-locked femtosecond Yb-doped fiber laser employing a semiconductor saturable absorber in a colliding-pulse configuration. 380-fs pulses at 605 MHz repetition rate with >60 dB supermode suppression is achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett. 22, 316 (1997).
    [CrossRef] [PubMed]
  2. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spühler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, “Practical low-noise stretched-pulse Yb3+-doped fiber laser,” Opt. Lett. 27, 291 (2002).
    [CrossRef]
  3. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 m from a wave-breaking-free fiber laser,” Opt. Lett. 28, 1365 (2003).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3550
    [CrossRef] [PubMed]
  5. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628
    [CrossRef] [PubMed]
  6. S. Chu, T. Liu, C. Sun, C. Lin, and H. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11, 933–938 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933.
    [CrossRef] [PubMed]
  7. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys. A,  76, 351 (2003).
    [CrossRef]
  8. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418 (2000).
    [CrossRef]
  9. N. H. Bonadeo, W. H. Knox, J. M. Roth, and K. Bergman, “Passive harmonic mode-locked soliton fiber laser stabilized by an optically pumped saturable Bragg reflector,” Opt. Lett. 25, 1421 (2000).
    [CrossRef]
  10. Thomas F. Carruthers and Irl N. Duling III, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett. 21, 1927 (1996).
    [CrossRef] [PubMed]
  11. T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
    [CrossRef]
  12. M. Guina and O. G. Okhotnikov, “Harmonic mode locking by synchronous optical pumping of a saturable absorber with the residual pump,” Opt. Lett. 28, 358 (2003).
    [CrossRef] [PubMed]
  13. J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
    [CrossRef]
  14. O. G. Okhotnikov and M. Guina, “Colliding-pulse harmonically mode-locked fiber laser,” Appl. Phys. B 72, 381 (2001).
    [CrossRef]
  15. Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
    [CrossRef]
  16. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Selected Topics in Quantum Electron,  7, 504, (2001).
    [CrossRef]
  17. W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17, 514 (1992).
    [CrossRef] [PubMed]
  18. Q. Ye, C. Xu, X. Liu, and W. H. Knox, et. al., “Dispersion Measurement of Tapered Air-Silica Microstructure Fiber by White-Light Interferometry”, Appl. Opt.,  41, 4467 (2002).
    [CrossRef] [PubMed]
  19. S. Fleming and T. Whitley, “Measurement and analysis of pumpdependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113 (1996).
    [CrossRef]
  20. Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” Opt. Lett. 29, 2121 (2004).
    [CrossRef] [PubMed]
  21. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
    [CrossRef] [PubMed]
  22. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
    [CrossRef]
  23. Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” in Conference on Lasers and Electro-Optics (CLEO) 2004, paper CThK2.
  24. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806, (1992).
    [CrossRef]

2004 (1)

2003 (5)

2002 (3)

2001 (2)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Selected Topics in Quantum Electron,  7, 504, (2001).
[CrossRef]

O. G. Okhotnikov and M. Guina, “Colliding-pulse harmonically mode-locked fiber laser,” Appl. Phys. B 72, 381 (2001).
[CrossRef]

2000 (2)

1997 (3)

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett. 22, 316 (1997).
[CrossRef] [PubMed]

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

1996 (2)

S. Fleming and T. Whitley, “Measurement and analysis of pumpdependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113 (1996).
[CrossRef]

Thomas F. Carruthers and Irl N. Duling III, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett. 21, 1927 (1996).
[CrossRef] [PubMed]

1995 (1)

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

1994 (1)

T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
[CrossRef]

1992 (2)

W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17, 514 (1992).
[CrossRef] [PubMed]

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806, (1992).
[CrossRef]

1985 (1)

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Avrutin, E. A.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

Bergman, K.

Bonadeo, N. H.

Buckley, J.

Buckley, J. R.

Carruthers, T.

T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
[CrossRef]

Carruthers, Thomas F.

Cautaerts, V.

Chemla, D. S.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Chu, S.

Clark, W. G.

Clausnitzer, T.

Deng, Y.

Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” Opt. Lett. 29, 2121 (2004).
[CrossRef] [PubMed]

Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” in Conference on Lasers and Electro-Optics (CLEO) 2004, paper CThK2.

Dennis, M.

T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
[CrossRef]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Duling, I.

T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
[CrossRef]

Duling III, Irl N.

Fleming, S.

S. Fleming and T. Whitley, “Measurement and analysis of pumpdependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113 (1996).
[CrossRef]

Fork, R. L.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Fry, A. R.

Fuchs, H.-J.

Galvanauskas, A.

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Selected Topics in Quantum Electron,  7, 504, (2001).
[CrossRef]

Garcia, J.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys. A,  76, 351 (2003).
[CrossRef]

Gossard, A. C.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Guina, M.

Hanna, D. C.

Hanna, David C.

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

Haus, H. A.

Haus, H.A.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Ilday, F. Ö.

Ippen, E. P.

Ippen, E.P.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Ironside, C. N.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

Jones, D.J.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Keller, U.

Kelly, S. M.

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806, (1992).
[CrossRef]

Kley, E.-B.

Knox, W. H.

Kuznetsova, L.

Lefort, L.

Lim, H.

Limpert, J.

Lin, C.

Liu, T.

Liu, X.

Martins-Filho, J. F.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

Mazur, E.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys. A,  76, 351 (2003).
[CrossRef]

Miller, D. A. B.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Nelson, L.E.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Nilsson, Johan

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

Okhotnikov, O. G.

Paschotta, R.

Paschotta, Rüdiger

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

Price, J. H. V.

Richardson, D. J.

Roberts, J. S.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

Roth, J. M.

Schaffer, C.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys. A,  76, 351 (2003).
[CrossRef]

Schreiber, T.

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Spühler, G. J.

Sun, C.

Sysoliatin, A.

Tamura, K.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Tropper, Anne C.

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

Tsai, H.

Tünnermann, A.

Weston, J.

Whitley, T.

S. Fleming and T. Whitley, “Measurement and analysis of pumpdependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113 (1996).
[CrossRef]

Wiegmann, W.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Wise, F. W.

Wong, W. S.

Xu, C.

Ye, Q.

Yu, C. X.

Zellmer, H.

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. A (1)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys. A,  76, 351 (2003).
[CrossRef]

Appl. Phys. B (2)

O. G. Okhotnikov and M. Guina, “Colliding-pulse harmonically mode-locked fiber laser,” Appl. Phys. B 72, 381 (2001).
[CrossRef]

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277 (1997).
[CrossRef]

Electron. Lett. (2)

T. Carruthers, I. Duling, and M. Dennis, “Active-passive modelocking in a single-polarization Erbium fiber laser,” Electron. Lett. 30, 1051 (1994).
[CrossRef]

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806, (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Fleming and T. Whitley, “Measurement and analysis of pumpdependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113 (1996).
[CrossRef]

Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.,  33, 1049, (1997).
[CrossRef]

IEEE J. Selected Topics in Quantum Electron (2)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Selected Topics in Quantum Electron,  7, 504, (2001).
[CrossRef]

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory,” IEEE J. Selected Topics in Quantum Electron,  1, 539, (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (9)

Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” Opt. Lett. 29, 2121 (2004).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 m from a wave-breaking-free fiber laser,” Opt. Lett. 28, 1365 (2003).
[CrossRef] [PubMed]

M. Guina and O. G. Okhotnikov, “Harmonic mode locking by synchronous optical pumping of a saturable absorber with the residual pump,” Opt. Lett. 28, 358 (2003).
[CrossRef] [PubMed]

W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17, 514 (1992).
[CrossRef] [PubMed]

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett. 22, 316 (1997).
[CrossRef] [PubMed]

Thomas F. Carruthers and Irl N. Duling III, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett. 21, 1927 (1996).
[CrossRef] [PubMed]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418 (2000).
[CrossRef]

N. H. Bonadeo, W. H. Knox, J. M. Roth, and K. Bergman, “Passive harmonic mode-locked soliton fiber laser stabilized by an optically pumped saturable Bragg reflector,” Opt. Lett. 25, 1421 (2000).
[CrossRef]

L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spühler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, “Practical low-noise stretched-pulse Yb3+-doped fiber laser,” Opt. Lett. 27, 291 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room Temperature GaAs Quantum Wells,” Phys. Rev. Lett. 54, 1306 (1985).
[CrossRef] [PubMed]

Other (1)

Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030nm,” in Conference on Lasers and Electro-Optics (CLEO) 2004, paper CThK2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The experimental configuration, Ls is set to be 1/14 of the total cavity length.

Fig. 2. (a)
Fig. 2. (a)

The configuration of the pump-probe experiment.

Fig. 2. (b)
Fig. 2. (b)

The transmission spectrum of the SSA.

Fig. 2. (c)
Fig. 2. (c)

Transmission response of the SSA measured by the pump-probe

Fig. 3. (a)
Fig. 3. (a)

Optical spectrum of the fundamental mode-locking caused by the SSA.

Fig. 3. (b)
Fig. 3. (b)

RF spectrum of the fundamental mode-locking caused by the SSA.

Fig. 3. (c)
Fig. 3. (c)

Optical spectrum of the 14th harmonic mode-locking.

Fig. 3. (d)
Fig. 3. (d)

RF spectrum of the 14th harmonic mode-locking at 605 MHz, the supermode suppression is >60 dB.

Fig. 4.
Fig. 4.

(a) The interferometric auto-correlation of the pulse at 14th harmonic, the FWHM of the trace is ~650-fs, the FWHM of the pulse is estimated to be ~380-fs; (b) The pulse train of the 14th harmonic mode-locking at 605 MHz; (c) Cross-correlation between adjacent pulses, the FWHM of the trace is ~820-fs.

Metrics