Abstract

The physical vapor deposition process of serial bideposition is adapted to the fabrication of uniaxial optical coatings. During the coating process the vapor impinges at an angle of incidence of about 70° on to the substrate, and a stepwise axial rotation with 90° increments causes a columnar structure to grow normal to the substrate. Symmetry considerations that follow from the choice of 90° for the stepwise increment ensure that the film is achiral and has negligible in-plane linear birefringence. Optical characterization techniques confirm that films of tantalum oxide, titanium oxide and zirconium oxide are positive uniaxial with ne -no in the range 0.10 to 0.14.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. J. Hodgkinson and Q. H.Wu, ???Serial bideposition of anisotropic thin films with enhanced linear birefringence,??? Appl. Opt. 38 3621???3625 (1999).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).
  3. P. Yeh and C. Gu, ???Birefringent optical compensators for TN-LCDs,??? Proc. SPIE 3421, 224-235 (1998).
    [CrossRef]
  4. J. P. Eblen, W. J. Gunning, D. B. Taber, P. Yeh, M. Khoshnevisan, J. Beedy, and L. G. Hale, ???Thin-film birefringent devices based on form birefringence,??? Proc. SPIE 2262 234-235 (1994).
    [CrossRef]
  5. K. Kaminska, T. Brown, G. Beydaghyan and K. Robbie, ???Vacuum evaporated porous silicon photonic interference filters,??? Appl. Opt. 42, 4212-4219 (2003).
    [CrossRef] [PubMed]
  6. J. M. Nieuwenhuizen, H. B. Haanstra, ???Microfractography of thin films,??? Philips Tech. Rev. 27, 87-91 (1966).
  7. O. R. Monteiro, A. Vizir and I. G. Brown, ???Multilayer thin-films with chevron-like microstructure,??? J. Phys. D: Appl. Phys. 31, 3188-3196 (1998).
    [CrossRef]
  8. H. A. Macleod, Thin film Optical Filters (Adam Hilger 1969).
  9. I. J. Hodgkinson and Q.H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific 1998).
    [CrossRef]
  10. I. J. Hodgkinson and Q. H. Wu, ???Inorganic chiral optical materials,??? Adv. Mat. 13, 889-897 (2001).
    [CrossRef]

Adv. Mat. (1)

I. J. Hodgkinson and Q. H. Wu, ???Inorganic chiral optical materials,??? Adv. Mat. 13, 889-897 (2001).
[CrossRef]

Appl. Opt. (2)

J. Phys. D: Appl. Phys. (1)

O. R. Monteiro, A. Vizir and I. G. Brown, ???Multilayer thin-films with chevron-like microstructure,??? J. Phys. D: Appl. Phys. 31, 3188-3196 (1998).
[CrossRef]

Philips Tech. Rev. (1)

J. M. Nieuwenhuizen, H. B. Haanstra, ???Microfractography of thin films,??? Philips Tech. Rev. 27, 87-91 (1966).

Proc. SPIE (2)

P. Yeh and C. Gu, ???Birefringent optical compensators for TN-LCDs,??? Proc. SPIE 3421, 224-235 (1998).
[CrossRef]

J. P. Eblen, W. J. Gunning, D. B. Taber, P. Yeh, M. Khoshnevisan, J. Beedy, and L. G. Hale, ???Thin-film birefringent devices based on form birefringence,??? Proc. SPIE 2262 234-235 (1994).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).

H. A. Macleod, Thin film Optical Filters (Adam Hilger 1969).

I. J. Hodgkinson and Q.H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Coating setup for serial bideposition.

Fig. 2.
Fig. 2.

Apparatus used for mapping angular retardance.

Fig. 3.
Fig. 3.

(Top) Simulated and experimental angular retardance maps for a normal-columnar biaxial film; (upper-middle) simulated and experimental maps for a tilted-columnar biaxial film; (lower-middle) simulated maps for normal-columnar positive and negative uniaxial films; (bottom) simulated and experimental maps for a film with all principal axes inclined to the surface of the substrate.

Fig. 4.
Fig. 4.

Symmetries of angular retardance maps for normal-columnar biaxial, tilted-columnar biaxial, normal-columnar uniaxial nanostructures and for a film with all axes inclined to the surface of the substrate.

Fig. 5.
Fig. 5.

Apparatus used for measuring the Abelès refractive index.

Fig. 6.
Fig. 6.

Retardance profiles simulated for a 2-µm slab of a uniaxial material without interference, and for a film of the same material with interference.

Fig. 7.
Fig. 7.

Simulated and experimental angular retardance maps for a positive normal-columnar uniaxial film with a small in-plane anisotropy.

Tables (3)

Tables Icon

Table 1. Nanostructures formed by serial bideposition.

Tables Icon

Table 2. Parameters used in simulations of angular retardance maps.

Tables Icon

Table 3. Properties of inorganic positive uniaxial films (λ=633nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n B = tan θ B .
γ film = γ sub
n B = n e ( n e 2 1 n o 2 1 ) 1 2 ,
Δ = 2 π n o d [ ( 1 β 2 n e 2 ) 1 2 ( 1 β 2 n o 2 ) 1 2 ] λ

Metrics