Abstract

We present a technique for rapid characterization of degenerate nonlinear absorption and refraction spectra using a femtosecond white-light continuum (WLC) pulse to perform Z-scans. The spectral components of the WLC source are temporally and spatially dispersed to minimize nondegenerate two-photon absorption (2PA) processes. We demonstrate the validity of the method by measuring the 2PA spectrum of a well-characterized semiconductor, ZnSe.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
    [Crossref]
  2. K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)
  3. L.W. Tutt and T.F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quamtum Electron 17, 299 (1993)
    [Crossref]
  4. H.M Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, London, 1985)
  5. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
    [Crossref]
  6. R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
    [Crossref]
  7. G.S. He, T.C Lin, P.N. Prasad, R. Kannan, R.A. Vaia, and L.S. Tan, “New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation,” Opt. Express 10, 566 (2002)
    [Crossref] [PubMed]
  8. E.W. Van Sryland, M.A. Woodall, H. Vanherzeele, and M.J. Soileau, “Energy band-gap dependence of twophoton absorption,” Opt. Lett. 10, 490 (1985)
    [Crossref]
  9. A.K. Dharmadhikari, F.A. Rajgara, N.C.S. Reddy, A.S. Sandhu, and D. Mathur, “Highly Efficient White Light Generation from Barium Fluoride,” Opt. Express 12, 695 (2004)
    [Crossref] [PubMed]
  10. A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
    [Crossref]
  11. S. Yamaguchi and H. Hamaguchi, “Convenient method of measuring the chirp structure of femtosecond white-light continuum pulses,” Appl. Spectrosc. 49, 1513 (1995)
    [Crossref]
  12. A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, and E.W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” J. Opt. Soc. Am. B 9, 405 (1992)
    [Crossref]
  13. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955 (1989)
    [Crossref] [PubMed]
  14. M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

2004 (1)

2002 (2)

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

G.S. He, T.C Lin, P.N. Prasad, R. Kannan, R.A. Vaia, and L.S. Tan, “New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation,” Opt. Express 10, 566 (2002)
[Crossref] [PubMed]

2000 (1)

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

1996 (1)

A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
[Crossref]

1995 (1)

1993 (1)

L.W. Tutt and T.F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quamtum Electron 17, 299 (1993)
[Crossref]

1992 (1)

1990 (1)

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
[Crossref]

1989 (1)

1985 (1)

Balu, M.

M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

Belfield, K.D.

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

Berland, K.M.

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

Boggess, T.F.

L.W. Tutt and T.F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quamtum Electron 17, 299 (1993)
[Crossref]

Brodeur, A.

A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
[Crossref]

Chin, S.L.

A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
[Crossref]

Dharmadhikari, A.K.

Dong, C.Y.

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

Dubikovsky, V.

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

Gibbs, H.M

H.M Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, London, 1985)

Hagan, D. J.

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

Hagan, D.J.

A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, and E.W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” J. Opt. Soc. Am. B 9, 405 (1992)
[Crossref]

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
[Crossref]

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

Hales, J.

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

Hamaguchi, H.

He, G.S.

Ilkov, F.A.

A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
[Crossref]

Kannan, R.

Kobyakov, A.

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

Lin, T.C

Masters, B.R.

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

Mathur, D.

Miesak, E.J.

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

Negres, R.

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

Prasad, P.N.

Rajgara, F.A.

Reddy, N.C.S.

Ren, X.

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

Said, A.A.

Sandhu, A.S.

Sheik-Bahae, M.

So, P.T.C

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

Soileau, M.J.

Tan, L.S.

Tutt, L.W.

L.W. Tutt and T.F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quamtum Electron 17, 299 (1993)
[Crossref]

Vaia, R.A.

Van Sryland, E.W.

Van Stryland, E. W.

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

Van Stryland, E.W.

A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, and E.W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” J. Opt. Soc. Am. B 9, 405 (1992)
[Crossref]

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
[Crossref]

M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955 (1989)
[Crossref] [PubMed]

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

Vanherzeele, H.

Wang, J.

Wei, T.H.

A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, and E.W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” J. Opt. Soc. Am. B 9, 405 (1992)
[Crossref]

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
[Crossref]

Woodall, M.A.

Yamaguchi, S.

Young, J.

Annual Review of Biomedical Engineering (1)

P.T.C So, C.Y. Dong, B.R. Masters, and K.M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering 2, 399 (2000)
[Crossref]

Appl. Spectrosc. (1)

IEEE J.Quantum Electron. (2)

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J.Quantum Electron. 26, 760 (1990)
[Crossref]

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J.Quantum Electron. 38, 1205 (2002)
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Brodeur, F.A. Ilkov, and S.L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193 (1996)
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Prog. Quamtum Electron (1)

L.W. Tutt and T.F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quamtum Electron 17, 299 (1993)
[Crossref]

Other (3)

H.M Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, London, 1985)

K.D. Belfield, X. Ren, D.J. Hagan, E.W. Van Stryland, V. Dubikovsky, and E.J. Miesak, “Microfabrication via two-photon photoinitiated polymerization,” Abstr. Papers Amer. Chem. Soc.218, (2001)

M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, “White-light continuum z-scan technique for nonlinear material characterization,” CLEO Conference, San Francisco, May 16–21, 2004

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

WLC Z-scan experimental setup. CPA-2001-femtosecond source; WP-waveplate; P-polarizer; L-lens; GP-glass prism; M-mirror; NBF-narrow band filter; BS-beamsplitter; S-sample; D1, D2-detectors. A and B denote the positions of additional elements inserted in the set-up. NBF(SW) is used only in the single wavelength configuration discussed in the text with the other two NBF’s removed.

Fig. 2.
Fig. 2.

Normalized Z-scan transmittances of ZnSe measured at 650nm for a) the WLC configuration and b) the SW configuration. The solid lines represent fittings used to extract β values.

Fig. 3.
Fig. 3.

Normalized Z-scan transmittance of ZnSe measured at 670nm with the WLC beam temporally dispersed. The solid lines represent fittings used to extract β values a) WLC configuration, b) SW configuration.

Fig. 4.
Fig. 4.

Normalized Z-scan transmittance of ZnSe measured at 670nm with the WLC beam temporally and spatially dispersed. The solid lines represent fittings used to extract β values a) WLC configuration, b) SW configuration.

Fig. 5.
Fig. 5.

Normalized Z-scan transmittance of ZnSe measured at different wavelengths with the WLC beam temporally and spatially dispersed. The solid lines represent fittings used to extract β values. Z-scan traces are shifted from their original positions for an easier view.

Fig. 6.
Fig. 6.

2PA coefficient, β, values obtained from theory and from the experimental data fittings.

Metrics