Abstract

A novel all-optical microwave filter with a frequency response equivalent to a bandpass filter is presented. An electro-optic phase modulator combined with a dispersive device is employed to eliminate the baseband resonance of a typical lowpass filter. A two-tap bandpass transversal microwave filter with a null-to-null bandwidth of 8.8 GHz and a 35-dB notch rejection level is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Sales, J. Capmany, J. Marti, and D. Pastor, ???Experimental demonstration of fiber-optic delay line filters with negative coefficients,??? Electron. Lett. 31, 1095-1096 (1995).
    [CrossRef]
  2. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, ???All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,??? IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
    [CrossRef]
  3. X. Wang and K. T. Chan, ???Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,??? Electron. Lett. 36, 2001-2002 (2000).
    [CrossRef]
  4. S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, ???A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,??? IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
    [CrossRef]
  5. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, ???Microwave photonics filters with negative coefficients based on phase inversion in an electro-optic modulator,??? Opt. Lett. 28, 1415-1417 (2003).
    [CrossRef] [PubMed]
  6. J. Mora, M. V. Andres, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor, and S. Sales, ???Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings,??? Opt. Lett. 28, 1308-1310 (2003).
    [CrossRef] [PubMed]
  7. E. H. W. Chan and R. A. Minasian, ???Novel all-optical RF notch filters with Equivalent Negative Tap Response,??? IEEE. Photon. Technol. Lett. 16, 1370-1372 (2004).
    [CrossRef]

Electron. Lett.

X. Wang and K. T. Chan, ???Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,??? Electron. Lett. 36, 2001-2002 (2000).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, ???Experimental demonstration of fiber-optic delay line filters with negative coefficients,??? Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, ???A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,??? IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, ???All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,??? IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

IEEE. Photon. Technol. Lett.

E. H. W. Chan and R. A. Minasian, ???Novel all-optical RF notch filters with Equivalent Negative Tap Response,??? IEEE. Photon. Technol. Lett. 16, 1370-1372 (2004).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Block diagram of the proposed bandpass filter. LD: laser diode, PC: polarization controller, PD: photodiode.

Fig. 2.
Fig. 2.

(a) Optical phase modulation. (b) Recovered RF power vs. RF frequency.

Fig. 3.
Fig. 3.

Frequency response H 1 (ω). Solid line: 1550 nm; dashed line: 1590 nm; dotted line: 1525 nm.

Fig. 4.
Fig. 4.

Frequency response of the proposed bandpass filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E RF ( t ) cos ( π χ λ 0 2 f m 2 c + π 2 ) · cos ( 2 π f m t + φ ) ,
H 2 ( ω ) n = 1 N exp ( j φ n ) = n = 1 N exp [ j ω m · ( n 1 ) · T ] ,
H ( ω ) = H 1 ( ω ) · H 2 ( ω ) .

Metrics