Abstract

We present a simple method to pick up (sense) large objects that are far away, and then display their three-dimensional images within the depth of focus of projection integral imaging systems. For this purpose, we propose to use either curved pickup devices or curved display devices or both. In this method, as the object distance increases, the longitudinal image depth reduces in a nonlinear way, while the lateral size reduces in a linear way. To reduce the depth of reconstructed images alone, a method to zoom in elemental images can be used. We analyze the two methods when they are used together. Experiments are presented to show the feasibility of our approach.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).
  2. T. Okoshi, ???Three-dimensional display,??? Proc. IEEE 68, 548-564 (1980).
    [CrossRef]
  3. A.R.L. Travis, ???The display of Three-dimensional video images,??? Proc. of IEEE 85, 1817-1832 (1997).
    [CrossRef]
  4. D.H. McMahon and H.J. Caulfield, ???A technique for producing wide-angle holographic displays,??? Appl. Opt. 9, 91-96 (1970).
    [CrossRef] [PubMed]
  5. I. Yamaguchi and T. Zhang, ???Phase-shifting digital holography,??? Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  6. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, ???Image reconstruction using electrooptic holography,??? Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003, vol. 1 (IEEE, Piscataway, NJ, 2003) pp. 172-173.
  7. G. Lippmann, ???La photographie integrale,??? Comptes-Rendus Academie des Sciences 146, 446-451 (1908).
  8. H. E. Ives, ???Optical properties of a Lippmann lenticulated sheet,??? J. Opt. Soc. Am. 21, 171-176 (1931).
    [CrossRef]
  9. C.B. Burckhardt, ???Optimum parameters and resolution limitation of integral photography,??? J. Opt. Soc. Am. 58, 71-76 (1968).
    [CrossRef]
  10. N. Davies, M. McCormick, and M. Brewin, ???Design and analysis of an image transfer system using microlens arrays,??? Opt. Eng. 33, 3624-3633 (1994).
    [CrossRef]
  11. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, ???Real-time pickup method for a three-dimensional image based on integral photography,??? Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  12. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, ???Analysis of resolution limitation of integral photography,??? J. Opt. Soc. Am. A 15, 2059-2065 (1998).
    [CrossRef]
  13. J.-S. Jang, F. Jin, and B. Javidi, ???Three-dimensional integral imaging with large depth of focus using real and virtual image fields,??? Opt. Lett. 28, 1421-1423 (2003).
    [CrossRef] [PubMed]
  14. J.-S. Jang and B. Javidi, ???Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,??? Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  15. S.-W. Min, B. Javidi, and B. Lee, ???Enhanced three-dimensional integral imaging system by use of double display devices,??? Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  16. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, ???Gradient-index lens-array method based on real-time integral photography for three-dimensional images,??? Appl. Opt. 37, 2034-2045 (1998).
    [CrossRef]
  17. Y. Kim, J. Park, H. Choi, S. Jung, S. Min, and B. Lee, ???Viewing-angle-enhanced integral imaging system using a curved lens array,??? Opt. Express 12, 421-429 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421</a>.
    [CrossRef] [PubMed]
  18. J.-S. Jang and B. Javidi, ???Large depth-of-focus time-multiplexed three-dimensional integral imaging using lenslets with non-uniform focal lengths and aperture sizes,??? Opt. Lett. 28, 1924-1926 (2003).
    [CrossRef] [PubMed]
  19. J.-S. Jang, Y.-S. Oh, and B. Javidi, ???Spatiotemporally multiplexed integral imaging projector for large-scale high- resolution three-dimensional display,??? Opt. Express 12, 557-563 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-557">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-557</a>.
    [CrossRef] [PubMed]
  20. J.S. Jang and B. Javidi, ???Very-large scale integral imaging (VLSII) for 3D display,??? to appear in the Journal of Optical Engineering, (2005).
  21. J.-S. Jang and B. Javidi, ???Three-dimensional projection integral imaging using micro-convex-mirror arrays,??? Opt. Express 12, 1077-1083 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1077">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1077</a>.

Appl. Opt.

Comptes-Rendus Academie des Sciences

G. Lippmann, ???La photographie integrale,??? Comptes-Rendus Academie des Sciences 146, 446-451 (1908).

IEEE LEOS 2003

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, ???Image reconstruction using electrooptic holography,??? Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003, vol. 1 (IEEE, Piscataway, NJ, 2003) pp. 172-173.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Journal of Optical Engineering

J.S. Jang and B. Javidi, ???Very-large scale integral imaging (VLSII) for 3D display,??? to appear in the Journal of Optical Engineering, (2005).

Opt. Eng.

N. Davies, M. McCormick, and M. Brewin, ???Design and analysis of an image transfer system using microlens arrays,??? Opt. Eng. 33, 3624-3633 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

T. Okoshi, ???Three-dimensional display,??? Proc. IEEE 68, 548-564 (1980).
[CrossRef]

Proc. of IEEE

A.R.L. Travis, ???The display of Three-dimensional video images,??? Proc. of IEEE 85, 1817-1832 (1997).
[CrossRef]

t. Lett.

J.-S. Jang and B. Javidi, ???Large depth-of-focus time-multiplexed three-dimensional integral imaging using lenslets with non-uniform focal lengths and aperture sizes,??? Opt. Lett. 28, 1924-1926 (2003).
[CrossRef] [PubMed]

Other

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Conventional integral imaging with planar devices. (a) Pickup. (b) Real image display. (c) Virtual image display.

Fig. 2.
Fig. 2.

Projection integral imaging with planar devices. (a) When a positive lenslet array is used. (b) When a negative lenslet array is used. (c) When a micro-concave-mirror array is used. (d) When a micro-convex-mirror array is used.

Fig. 3.
Fig. 3.

Nonlinear depth control using curved devices. (a) and (b) Pickup of elemental images using curved devices, and 3-D image reconstruction using planar devices. (c) and (d) Pickup of elemental images using planar devices and 3-D image reconstruction using curved devices. (e) Equivalent setup to curved pickup devices. (f) Equivalent setup to curved display devices. It is assumed that an orthoscopic virtual image is reconstructed.

Fig. 4.
Fig. 4.

Modified pickup system. (a) Elemental images generated by a planar pickup lenslet array are detected through a camera lens. (b) When a curved lenslet array is used in the modified pickup system, we can analyze its equivalent planar pickup setup with two OPLE lenses.

Fig. 5.
Fig. 5.

Diverging projection. (a) When a planar display lenslet array is used. (b) When a curved lenslet array is used. (c) When a curved micro-convex-mirror array is used.

Fig. 6.
Fig. 6.

(a) Objects to be imaged. (b) Modified pickup system.

Fig. 7.
Fig. 7.

Optical setup for 3-D image display.

Fig. 8.
Fig. 8.

Center parts of elemental images. (a) The OPLE lens was not used. (b) The OPLE lens was used. In (a) and (b), α=1(r=1/4), and Rpe =12.5 cm. (c) Digital zoom-in elemental images of (a). (d) Digital zoom-in elemental images of (b). In (c) and (d), α=2.5 (r=1/10).

Fig. 9.
Fig. 9.

Reconstructed orthoscopic virtual 3-D images when the OPLE lens was not used (Rpe =20 cm).From the first row to the last raw, r=1/4, 1/6, 1/8, and 1/10, respectively.

Fig. 10.
Fig. 10.

Reconstructed orthoscopic virtual 3-D images when the OPLE lens was used (Rpe =12.5 cm). From the first row to the last raw, r=1/4, 1/6, 1/8, and 1/10, respectively.

Tables (1)

Tables Icon

Table 1. Estimated Positions of Reconstructed Images a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 g + 1 L i = 1 f ,
r = f d α f p .
z = R p z o R p + z o z i
z = R d z o R d + z o
z r = r R p R d z o ( r R p + R d ) z o + R p R d
R p e = R c R p R c + R p
R d e = R s R d R s + R d .

Metrics