Abstract

Near-field imaging of an engineered double layer structure in transmission mode has shown enhancement of light intensity through the structure. An array created by an optically thick double layer structure of a total thickness of 165 nm containing twin 50 nm Au layers was imaged using a near-field scanning optical microscope in illumination mode. The resulting transmission image shows an increased local transmission at the position of each particle in the array. This viewable enhancement is due to a nanoantenna effect that is created by a resonant plasmon oscillation between the two layers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio and P.A. Wolff, ???Extraordinary optical transmission through sub-wavelength hole arrays,??? Nature 391, 667-669 (1998).
    [CrossRef]
  2. L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry and T.W. Ebbesen, ???Theory of extraordinary optical transmission through subwavelength hole arrays,??? Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef]
  3. T. Thio, H.J. Lezec and T.W. Ebbesen, ???Strongly enhanced optical transmission through subwavelength holes in metal films,??? Physica B 279, 90-93 (2000).
    [CrossRef]
  4. T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata and R.A. Linke, ???Giant optical transmission of sub-wavelength apertures: physics and applications,??? Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  5. J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg and J.C. Weeber, ???Design of multipolar plasmon excitations in silver nanoparticles,??? Appl. Phys. Lett. 77, 3379-3381 (2000).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, ???Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,??? Appl. Phys. B 73, 239-243 (2001).
    [CrossRef]
  7. D.A. Genov, A.K. Sarychev, V.M. Shalaev and A. Wei, ???Resonant field enhancements from metal nanoparicle arrays,??? Nano Lett. 4, 153-158 (2004).
    [CrossRef]
  8. K. Li, M.I. Stockman and D.J. Bergman, ???Self-similar chain of metal nanospheres as an efficient nanolens,??? Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  9. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg and C. Girard, ???Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,??? Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  10. J. Prikulis, H. Xu, L. Gunnarsson, M. Käll and H. Olin, ???Phase-sensitive near-field imaging of metal nanoparticles,??? J. Appl. Phys. 92, 6211-6214 (2002).
    [CrossRef]
  11. A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman and V.I Klimov, ???Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,??? Opt. Lett. 28, 1686-1688 (2003).
    [CrossRef] [PubMed]
  12. A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman and V.I Klimov, ???Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,??? Phys. Rev. B 69, 085401 (2004).
    [CrossRef]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, ???Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,??? Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg and J.C. Weeber, ???Design of multipolar plasmon excitations in silver nanoparticles,??? Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll and H. Olin, ???Phase-sensitive near-field imaging of metal nanoparticles,??? J. Appl. Phys. 92, 6211-6214 (2002).
[CrossRef]

Nano Lett. (1)

D.A. Genov, A.K. Sarychev, V.M. Shalaev and A. Wei, ???Resonant field enhancements from metal nanoparicle arrays,??? Nano Lett. 4, 153-158 (2004).
[CrossRef]

Nanotechnology (1)

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata and R.A. Linke, ???Giant optical transmission of sub-wavelength apertures: physics and applications,??? Nanotechnology 13, 429-432 (2002).
[CrossRef]

Nature (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio and P.A. Wolff, ???Extraordinary optical transmission through sub-wavelength hole arrays,??? Nature 391, 667-669 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman and V.I Klimov, ???Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,??? Phys. Rev. B 69, 085401 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry and T.W. Ebbesen, ???Theory of extraordinary optical transmission through subwavelength hole arrays,??? Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef]

K. Li, M.I. Stockman and D.J. Bergman, ???Self-similar chain of metal nanospheres as an efficient nanolens,??? Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg and C. Girard, ???Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,??? Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Physica B (1)

T. Thio, H.J. Lezec and T.W. Ebbesen, ???Strongly enhanced optical transmission through subwavelength holes in metal films,??? Physica B 279, 90-93 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Construction of double layer gold sample. (a)SEM topography of array; (b)SEM topography of a single dot; (c)Z-layer cross section

Fig. 2.
Fig. 2.

Illustration of experimental techniques. The double layer sample is illuminated, with 532 nm light, through a 150 nm diameter aperture pulled from fiber optics. Incident light on the sample scatters everywhere. Light is collected using classical optics below the sample. An APD is used to count photons.

Fig. 3.
Fig. 3.

Scanning results. The line drawn through (a) and (b) represents the cross section presented; (a)AFM channel, in nm; (b)NSOM channel, in arbitrary units; (c)A representative cross section of the AFM and NSOM channels is presented.

Fig. 4.
Fig. 4.

Construction of single layer gold sample. (a)SEM topography of dots; (b)Z-layer cross section

Fig. 5.
Fig. 5.

Scanning results - single layer gold dots. The line drawn through (a) and (b) represents the cross section presented; (a)AFM channel, in nm; (b)NSOM channel, in arbitrary units; (c)A representative cross section of the AFM and NSOM channels is presented.

Metrics