Abstract

We study the transmission of fluorescence through periodically modulated metal films. In one-dimensional corrugated films, transmission is mediated by coherent scattering of surface plasmons directly excited by fluorophores on the surface. This scattering is shown to be a two-dimensional problem in that diffraction orders along both axes are obtained with well-defined states of polarization. In films consisting of two-dimensional arrays of sub-wavelength apertures, an additional mechanism exists in the direct transmission of fluorescence through the apertures, which is the dominant mechanism of transmission as shown by measurement of the radiation pattern from these structures.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
    [Crossref] [PubMed]
  2. R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
    [Crossref] [PubMed]
  3. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
    [Crossref] [PubMed]
  4. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
    [Crossref]
  5. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [Crossref] [PubMed]
  6. T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [Crossref]
  7. W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [Crossref]
  8. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
    [Crossref]
  9. S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
    [Crossref]
  10. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
    [Crossref]
  11. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
    [Crossref]
  12. Y. Liu and S. Blair, “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
    [Crossref] [PubMed]
  13. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).
  14. N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
    [Crossref]

2003 (3)

W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Y. Liu and S. Blair, “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
[Crossref] [PubMed]

2002 (2)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

2000 (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
[Crossref]

1998 (1)

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

1995 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

1987 (1)

1986 (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

1984 (1)

N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
[Crossref]

1979 (1)

Barnes, W. L.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Blair, S.

Y. Liu and S. Blair, “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
[Crossref] [PubMed]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Dereux, A.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Eagen, C. F.

Ebbesen, T.W.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Ebbeson, T.W.

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Ghaemi, H. F.

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

Glass, N. E.

N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
[Crossref]

Gruhlke, R. W.

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[Crossref] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[Crossref] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Hashizume, J.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Herron, J. N.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Hobson, P. A.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

Holland, W. R.

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[Crossref] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Koyama, F.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Lezec, H. J.

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Liu, Y.

Y. Liu and S. Blair, “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
[Crossref] [PubMed]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
[Crossref]

Mills, D. L.

N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
[Crossref]

Sage, I.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Scherer, A.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
[Crossref]

Shinada, S.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Thio, T.

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
[Crossref]

Wasey, J. A. E.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

Weber, M.

N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
[Crossref]

Weber, W. H.

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Wolff, P. A.

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Appl. Phys. Lett. (2)

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

IEEE J. of Sel. Topics in Quantum Electron. (1)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. of Sel. Topics in Quantum Electron. 8, 378–386 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1133 (2000).
[Crossref]

Nature (London) (2)

T.W. Ebbeson, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (2)

N. E. Glass, M. Weber, and D. L. Mills, “Attenuation and dispersion of surface polaritons on gratings,” Phys. Rev. B 29, 6548–6559 (1984).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Phys. Rev. Lett. (2)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluoescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Other (1)

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” to appear in Nanotechnology (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for light transmission measurements.

Fig. 2.
Fig. 2.

Transmission of coherent incident light at 633 nm wavelength through the 1-D corrugated gold film. The upper right diagram is the calculation of surface-plasmon coupling angles along both transverse axes, parameterized by diffraction order. The state of incident polarization necessary for optimal coupling is shown at specific angles. Measurement of transmitted light versus incident angle along the x-axis (lower right) using p-polarized incident light (black curve) and s-polarized incident light (red curve). Measurement of transmitted light versus incident angle along the y-axis (upper left) using incident light with 45° polarization, which only couples into a surface plasmon mode via the +1 diffraction order. In all cases, the transmission peaks correspond closely with calculation.

Fig. 3.
Fig. 3.

Measurement of transmitted light versus incident angle along the y-axis using light with 45° polarization (left) and -45° polarization (right). In order to break the degeneracy in peak transmission angle, the sample was tilted a few degrees along the x-axis. For the -45° measurement, the incident polarization did not exactly match the optimal polarization of the upper branch so that a portion of the peak of the lower branch is evident.

Fig. 4.
Fig. 4.

Transmission of fluorescence with peak wavelength 670 nm through the 1-D corrugated gold film. The upper right diagram is the calculation of surface-plasmon coupling angles along both transverse axes, parameterized by diffraction order. The state of transmitted polarization is shown at specific angles. Measurement of transmitted light versus detection angle along the x-axis (lower right, measured without an analyzer); these transmission peaks are p-polarized. Measurement of transmitted light versus detection angle along the y-axis (upper left, measured without an analyzer); this transmission peak is ±45° polarized.

Fig. 5.
Fig. 5.

Transmission of fluorescence with peak wavelength 670 nm through the 2-D gold nanoaperture array. The upper right diagram is the calculation of surface-plasmon coupling angles along both transverse axes, parameterized by diffraction order. Measurement of transmitted light versus detection angle along the x-axis (lower right, measured without an analyzer). Transmitted light versus detection angle along the x-axis (upper left) measured with a p-directed analyzer (black curve) and through an s-directed analyzer (red curve) demonstrating that the transmission peaks are p-polarized.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k t + n K x ̂ = k sp ,
k t = ω c ( x ̂ sin θ x + y ̂ sin θ y )
k sp = ω c ε m ε ε m + ε ,
k t = ω c ( x ̂ sin α x + y ̂ sin α y )
k sp = k sp ( x ̂ cos ϕ + y ̂ sin ϕ ) ,
k t + n K x ̂ + m K y ̂ = k sp ,

Metrics